Inheritance and Virtual
Functions

11-26-2001

Opening Discussion

Do you have any questions about the
quiz?

What did we talk about last class?

Two Roles of Inheritance

Inheritance plays two roles in
programming languages like C++. We
have discussed these over the last two
classes.
Subtyping - When one type inherits from
another it becomes a subtype of it.
Reuse - Methods defined for a superclass can
be called for instances of a subclass without
being rewritten.




When Not to Reuse

At the end of last class I asked you if you
always want to reuse code from a
superclass when you inherit from it. As
you can now guess from the title of this
slide, the answer is no.

Sometimes subclasses need to do the
same type of thing, but they need to do
different specific actions. That is, they
need methods with the same names but
different implementations.

Virtual Functions

When you want different subclasses to
have different implementations of a
method, that method needs to be
declared virtual.

This is done simply by putting the virtual
keyword before the return type.

virtual int decideMve();
virtual void cal cVal ue();

Virtual vs. Non-virtual

When a function takes as an argument a
reference or pointer to a supertype when
a non-virtual function is called it always
calls the method of the supertype, even if
the subtype overloads it.

With a virtual function it calls the “closest”
declared method.

We aren't going to discuss the issue of
scoping non-virtual functions.




Once Virtual, Always
Virtual

Once a function has been declared virtual
in a superclass it is virtual in all the
subclasses in C++. As a result, the
subclasses don't have to explicitly say it is
virtual.

However, I would recommend that if a
function is virtual you call it such
everywhere so that people don't have to
look to superclasses to find out.

Pure Virtual

A virtual function declaration in a class
can be made pure virtual which implies
that the method has no implementation of
the superclass. Classes with outstanding
pure virtual functions can't be
instantiated.

virtual int decideMve()=0;
virtual void cal cVval ue() =0;

Look at Code

Let’s now go add a virtual function to the
Pac-Man code that we started working on
in the last class.

Last class we put in a function that had
the entity move one step in the direction
that it was set to move in. They also
need to decide what direction to move in
at a given time. This should not be the
same for all of them and hence should be
virtual.




Minute Essay

Try to think of an example of an instance
where inheritance helps describe a logical
ordering of types. What behaviors I this
case might be virtual?

We will not be having class the rest of this
week. Feel free to use the time to work
on assignment #7 and maybe even to try
writing a little piece of code that uses
inheritance.




