Simple Conditionals and
Booleans

9-21-2001

Opening Discussion

What did we talk about last class?

Today we are going to move on to
conditional statements. What is a
conditional statement and why do we
want to be able to use them in our
programs?

Tracing Code

One of the most fundamental skills you
need as a programmer is something that
we haven't discussed yet, the ability to
trace code.

When you trace code you go through line
by line and examine what the code will do
when it is running. Functions can make
the flow through the code interesting, but
up until today the flow has gone linearly
through functions.

Function Call Expressions

The fact that functions with return values are
valid expressions means that they can be used
any place an expression can. This implies that
they can be used in arguments to other
functions. This is standard and it appears in the
ChangeMaker problem in the book.

The function in the argument must be evaluated
before the outer function can be called. At this
stage it also needs to appear in an argument
that is passed by value.

if/else Statements

The basic conditional statement found in
virtually every programming language is
the if statement. Generally there is also
the ability to have an “else” option.
if(condition) {
/1 Wien condition is true execute
/'l this bl ock.
} else {
/1 Wien condition is false execute
/'l this bl ock.

A Word on Style

The placement of brackets in an if/else
statement is a very subjective topic (it can be
borderline religious at times). I use a brackets
that save screen space keeping the open
bracket on the same line as the if or else. Your
book goes along the line that they should have
their own line and be lined up. There are other
conventions as well. I don't care what you use
as long as there is some logic and you are
consistent.

The code in the block SHOULD be indented.

Boolean Expressions

The condition in the code is generally
what would be called a boolean
expression. That is an expression that
has a value of true or false.

Boolean expressions can contain normal
arithmetic operators but they typically
contain other operators as well.

Comparison Operators

The following are operators that you can
use to compare numeric values in C++.
They return boolean values.

== - This is the equal sign in C++.
<, > - Less than and greater than.

<=, >= - Less than or equal to and
greater than or equal to.

1= - Not equal to.

Boolean Operators

There are other operators that operate on
boolean values.

! - unary not operator

&& - and

|| - or - This is not the way we typically
use or in English because it means one or
the other or both.

A~ - xor - This is what we use in English.
xor stands for exclusive or.

Short-circuit Boolean
Evaluation

If you recall I previously listed & and | as
bitwise numeric operators. They actually
work as boolean operators too, but the
double versions are typically used instead
because they are short-circuit operators.

This means that if the value of the left
argument determines the value of the
whole expression the right argument isn't
evaluated.

Integer Value of Booleans

C++ does not have a specific type for
booleans. There is a bool type but it is
essentially an int.

When an integer value is used in a
conditional 0 is interpreted as false and
anything else is interpreted as true.

Unfortunately this implies that two
expressions that evaluate as true in a
conditional might not be equal to one
another.

== ijs NOT =

One of the most common mistakes in
C++ is to put a single = in a check for
equality where == should be used.
Because boolean values are basically ints,
this is generally not a syntax error though
it is almost always a logic error.

Our compiler does not flag this with a
warning, even when you use the -
pedantic flag.

Minute Essay

Write a conditional statement to check if
an integer variable num is in the range
between 0 and 20 inclusive.

We will continue with conditionals on
Monday. Make sure you continue to read
chapter 4. On Monday I should also be
returning assignment 1 and handing out
the description of assignment 2.

