Functions

9-30-2002

Opening Discussion

What did we talk about last class?

Do you have any questions about the
assignment?

Minute Essay Responses

Strings, Files, Sorting? Later.

Stopping a loop. Can you do it without a
counter?

A second return statement?

What the initializer does. Write a loop to
print out some numbers.

When do you have to Ctrl-C?
Goto==Bad




More Minute Essays

Incrementing through odds, evens, or
random collections of numbers.

++ and -- operators are just shortcuts.
When to use do-while.

Programming in other languages?
Break in loops.

Drill problems.

Loops Inside of Loops

Just like conditionals, loops can be
nested.

Doing this results in code that executes a
large number of times. When programs
run slowly, typically the code you need to
optimize is just what is in the inner most
loops.

Breaking Problems into
Pieces

A key to solving any complex problem is
to break it into pieces that are of a more
manageable size and solve each of those,
then bring the elements together. This is
like the outline view of an algorithm.
Top-Down Design: Starting with the whole

problem, repeatedly break it into pieces going
down to what you can handle.

Bottom-Up Design: Starting will little pieces
work up to the full problem.




Functions in C

The way we break problem up in C is to break

our code into separate functions.

You have already seen how we can call

functions in our code. Now we look at how to

write them.

The first part of any function is it's signature:
return-type nanme(type al,type a2,.);

C uses a “single pass” compiler so it must know

about methods before they are called. Either
put a signature, or the whole function at top.

Parts of a Signature

C functions are much like normal math
functions, but type matters.

Return type: This is the type of what the
function returns. It will be void if the
function doesn't return anything.
Arguments: This is a list of types and
names for what is passed into the
function. Again, if nothing is passed in it
is void.

Function Body

A method can be declared with a
signature followed by a*;". The function
definition will have the signature followed
by curly braces enclosing the statements
that should be executed.

As with main, you can put any type of C
statements you want in there.




The return Statement

When the statement “return” is reached,
execution returns from the function to the
point it was called from.

For a void function you can use return; in
the middle and don't need any at the end.
For a non-void function return should be
followed by an expression of the correct
type for what should be returned.

Formal vs. Actual
Arguments

Inside a function arguments act like
variables. You don’t know what values
they will have in the function itself. Those
are the formal arguments.

At the point where the function is called,
values are “passed” to the function.

These are the actual arguments and
determine what the formal arguments will
be initialized to.

Minute Essay

Write a function called minl that takes
two integer arguments and returns the
smaller of the two.

Assignment #3 is due today and quiz #3
will be at the beginning of next class.




