Modularity in Code

10-14-2002

Opening Discussion

What did you talk about last class?

Do you have any questions about the
assignment that is due on Wednesday?
Let’s revisit the algorithm for making a
peanut butter and jelly sandwich. What
did it look like? How would you break it
into functions?

Pass by Reference (Quick
Review)

On Wednesday you talked about pass-by-
reference. This is when you pass pointers
as arguments into a function.

The power of pass by reference is that the
function has the ability to change the
values that the pointer points to and as a
result, change the value of something
visible to the rest of the program.

This can be used to “return” multiple
values.




Problem Solving Again

Now that you know how to write functions
and have some idea of how to use them
we can revisit the ideas of breaking
problems into pieces as well as the top-
down and bottom-up approaches to
design.

Functions are what give you the ability to
do this. Often, you can't see how the
whole program works, but you can build it
one function at a time.

Bite Size Pieces

Functions are the little bite sized pieces
that you can break your program up into
and easily tackle one piece at a time.
Sometimes a function will do nothing
more than call some other functions.
Writing these types of functions gives you
that ability to organize your thoughts on
what the rest of the program should do.

Not So Bite Sized Pieces

Quite often you will find that there are
groups of functions that go together in
some logical way to solve a problem and
are somehow logically separate from the
rest of your code.

These larger chunks are often called
modules and when done well they can be
reusable as libraries.

It is good programming practice to reduce
the dependencies between modules.




The Software Lifecycle

The process of making software is often
broken into 5 pieces (not always linear).

Analysis - Figuring out what the problem you
are trying to solve really is.

Design - Decide how to solve that problem in
code.

Implementation - Write the code.

Debugging - Find and correct the problems in
your code.

Maintenance - Changes and fixes for users.

Role of Modularity

Modularity plays a big role in the last four
phases of the software lifecycle.

Building good modules into the design
makes it easier to keep the code
organized.

Modules can be tested/debugged
independently much of the time.

Changes made to one module should
have a limited effect on other parts.

Minute Essay

Assignment #4 has you breaking a larger
problem up into pieces. In some manner
those pieces are related. What functions
might be a module in the problem that
you are working on?

Next class we start talking about arrays.
Especially if you are working on the
second option for assignment #4, looking
ahead a bit now could help shorten your
code.




