The Power of Recursion

10-28-2002

Opening Discussion

What did we talk about last class?

Do you have questions about the
assignment?

Revisiting Recursion

A recursive function is a function that calls
itself. The fact that the stack keeps
distinct memory locations for each call
makes this method very powerful.

We looked at how a simple recursive
function could be make to execute a loop
and used that to calculate factorials. We
also saw that it was at least slightly more
powerful than a basic loop and could print
inputs in reverse order.




Tracing a Recursive Loop
with Printing

Just to make it completely clear what
happens with the flow of control in a
recursive program, let’s look at out simple
loop function, but put in printf statements
that show us more explicitly what is
happening with the control flow in the
program.

Recursion in Multiple
Directions

Recursion is more powerful (and more
useful) when the function contains two or
more possible calls of itself. In this case,
a loop can't be easily used as a substitute
without major logic modifications.

Drawing out the call path of these types
of functions produces what computer
scientists call a tree.

Normally I do Fibonacci numbers for this.

Recursive Fibonacci
Numbers

This is the solution to the last minute
essay. Notice how incredibly similar it is
to the recurrence relationship that we
started with. Unfortunately, in this case
recursion is very inefficient because work

is repeated frequently.
int recurFib(int n) {
if(n<3) return 1;
return f(n-1)+f(n-2);




Flood Fill

If you have used a painting package, you
are familiar with the idea of “filling” the
area around a specific location with a
certain color.

One way of doing this easily in code is
with a recursive function that calls itself
up to 4 times if adjacent pixels are blank.

Let’s write a bit of code for this.

Debuggers

You can get help with finding runtime errors,
and to some extent logic errors as well.
Hopefully you have already used the practice of
putting extra printf statements in code to help
you figure out what it is doing. If you compile
with the -g option you can also use a debugger.
The debugger on these systems in gdb. You
run “gdb a.out” (or whatever your program
name is). Typing run at the prompt starts your
program. You can pipe things in there too.

More on the Debugger

When a fault occurs (could be you hitting ctrl-C)
you can type in where to get a stack trace
including line numbers.

The command print will print out variable
values.

Use quit to get out.

There are also many other powerful features in
the debugger that allow you to set break points,
return from functions, continue after breaks,
etc. Use help to see these.




Minute Essay

Is it clear how recursion works? Do you
see how a loop can be converted to a
recursive function that calls itself once? It
is clear to you how recursive functions
that call them selves more than once are
different from loops?

Assignment #5 is due at noon.
Assignment #6 has been posted to the
web and is due next Monday.




