Sequential Files

11-1-2002

Opening Discussion

What did we talk about last class?

Do you have any questions about the
assignment?

Motivation

So far we have only done input and
output to and from the “standard” input
and “standard” output. When we wanted
to work with files we could redirect them,
but that meant that we either couldn't
input from the keyboard, or we couldn’t
see the output, or both.

We'd like to be able to access files for
reading and writing and still have
keyboard input and screen output.




File Streams

The way that we do this in C is with file
streams. These are part of the stdio.h
library that you have been using all along,
we just haven't used this part of it.

These are called streams because there is
a parallel between data flowing through
them and water in a stream. The data
goes by once. You can't tell it to give you
back data that already went by.

FILE Pointers

The way we keep track of file stream in C
is with FILE pointers. FILE is another type
in C that is defined in stdio.h. Itis a
structure, something we will talk more
about later.

All the functions we will use work with
pointers to instances of the FILE type. In
your code you will declare FILE* variables
to represent the streams.

Opening Files

Before we can do anything with a file be have to
have it opened. For this we use the fopen
function. Do “man fopen” for details.

This function takes two strings and returns a
FILE*. The first string is the file name and the
second one specifies what we want to do with it
in a 2-3 character string.

First character is '’ for read, ‘w’ for write, or ‘a’ for

append..

The second character is ‘t’ for text or ‘b’ for binary.

We will only do text now.

A+’ can follow saying it is read and write.




Opening Details

When you open a file with the ‘w’ option it
will create a new file with that name. If
one already existed, it will be deleted in
the process.

Using 'r’ it won't create a file, but the file
must exist. The function will return NULL
if it doesn't exist already.

The ‘a’ option opens for writing, but what
is written is added to the end of the file.

File Input and Output

Once you have a FILE* you want to be
able to read from it or write to it. To do
this you use the fprintf and fscanf
functions.

These functions work just like printf and
scanf, but they take an additional first
argument of a FILE* telling them what file
to read from or write to.

The stdin and stdout global variables
represent standard input and output.

Closing Files

After we are done using a file, either
writing to it or reading from it, that file
needs to be closed. This is done with the
fclose function.

The man pages can give you details, but
this function is quite simple. It take a
FILE* as the only argument and closes
that file.




Code

Now we will write code that uses files to
demonstrate the usage of what we just
talked about.

Minute Essay

Write code that opens a file for writing
and prints the numbers 1 through 10 to it.




