Advanced Sorting

11-27-2002

Opening Discussion

What did we talk about last class?

Do you have any questions about the
assignment?

Motivation

You saw last time that sorting many
thousands of elements can be a bit time
consuming. In fact, that is the real
problem with the O(n2) algorithms. When
n gets really large things grind to a halt.
We'd like to have something better and
faster.

Can you think of any way we might do
this?




Revisiting Divide and
Conquer

Earlier we looked at algorithms that use
the divide and conquer technique of
solving problems. Some of you used this
in your equation parsing assignment.
The basic idea is that we break the
problem into smaller parts assuming it is
easier to solve that way, then build a
solution to the larger problem from the
solutions to the smaller pieces.

Today we apply that to sorting.

Merge Sort

This sort is based on the observation that
if we have two sorted arrays, we can build
one larger sorted array quickly, in O(n)
time. So we break the problem apart until
we get to single elements, then merge the
sorted sub-arrays back together.

The problem with this sort is that it can't
be done well in place. We have to have a
second array to copy into. It always
works in O(n log n) time thought.

Quick Sort

While merge sort does all its work coming
back up the recursion, quick sort does it
going down.

At each step we pick a pivot and put all
the elements smaller than the pivot on
one side and all the larger ones on the
other side. This can be done in O(n) time
and when we get to the bottom we have
a sorted array. It worked in place and
has average O(n log n) performance.




Generic Sorting

The one problem that we haven't dealt
with yet in sorting is that we have to write
different sort methods every time we
want to sort different types or sort on
different values. To get around this we
need polymophism. C has very poor
support for this.

What we have to do is cast our array to a
void* and pass a function pointer to be
used for comparisons.

Minute Essay

Assume we have a quick sort that always
uses the first element as the pivot. Trace
the behavior of a sort of {5, 1, 6, 3, 8, 4}
using this.

Have a great Thanksgiving! Remember
that assignment #9 is due when you get
back.




