Introduction to Pointers

10-6-2003

Opening Discussion

What did we talk about last class?

Do you have any questions about the
assignment?

Loops are critical to this class.
Differences between loops and recursion.

Making while impersonate do-while.
Initialize so it is true.

Test preparation.

Revisiting Code

We should look at the code that we had
written through last class, just to make
sure everyone has seen it and understand
the uses of loops in it.

Pointers

Our model of a computer has some form
of memory in it. We can refine that a
little by saying that the memory is made
of a long series of bytes, one after
another that we can read from and write
to if we know the “address” of them.

A pointer in programming is such an
address. Normal variables refer to what is
stored. A pointer is where it is stored.

Warning!

What we are about to talk about could be
confusing because we are going to
introduce two/three new uses for symbols
that you have just learned other uses for.
Don't be afraid, and try not to let it
confuse you. The meaning should
generally be clear from where it is used in
a program.

Declaring Pointers

A pointer variable is declared by putting and
asterisk in front of the variable name.
int *n; double *val;

The pointer becomes part of the type and
pointers to different types are different types
themselves. Since we can make a pointer to
any type and a pointer type is a type we can
have pointer to pointer types as well.

int **ptrptr,***ptrptrptr;

The “Address of” Operator

C has an operator that allows us to get the
address of a variable. You have seen it before
because you had to use it with scanf. It is the &
(which unfortunately also means bitwise and).
Applying & to a variable/expression gives you
the address it is stored at in memory. The type
is a pointer to the type of the
variable/expression.

int a

int *b=&a;

The Dereference Operator

Most operators have an inverse and the
same is true for &. It's inverse is the
dereference operator, * (which
unfortunately is just like a multiply).
Applied to a pointer, it “gives you” the
value that was pointed to.

int a=5, *b=&a;
printf(“%\n”, *b);

Assignments with Pointers

Pointers can be involved in two distinct
types of assignment, but in all cases the
types on both sides of the assignment
operator must be the same.
Pointer assignment:

int *a,*b,c;

a=&c;

b=a;
Dereferenced value assignment:

*a=4;

Pointer Arithmetic

Pointers can also be involved in simple
addition and subtraction opertations.
When this is done, the value changes by
the sizeof the type the pointer points to
for each unit incremented or
decremented.

For example, using a from the last slide,
a+1 is four larger than a on these
machines because a points to an int.

Code Involving Pointers

Now we are going to write some code
with pointers. In the code we will also
print out the addresses of pointers. It is
somewhat standard to print pointers as
hex values.

We can also examine the layout of the
stack and stack variables this way. This is
more for your knowledge than use in
programming.

Minute Essay

What does this do?

int a=4, *b=&a;
printf(“%\n", 5**b);

