Modularity in Code and FP
Numbers

10-10-2003

Opening Discussion

What did we talk about last class?

Do you have any questions about the
assignment that is due on Monday?

Let’s revisit the algorithm for making a peanut
butter and jelly sandwich. What did it look like?
How would you break it into functions?

r
r

Pass by Reference (Quick
Review)

On Wednesday we talked about pass-by-
reference. This is when you pass pointers
as arguments into a function.

The power of pass by reference is that the
function has the ability to change the
values that the pointer points to and as a
result, change the value of something
visible to the rest of the program.

This can be used to “return” multiple
values.




How Many Rabbits?

At least one student noticed something
interesting in the biology problem, their
answers start like mine, then change
slightly.

Floating-point numbers are not normal
“math” numbers. Some of the properties
of numbers you are used to are broken
because they have limited precision.

Problem Solving Again

Now that you know how to write functions
and have some idea of how to use them
we can revisit the ideas of breaking
problems into pieces as well as the top-
down and bottom-up approaches to
design.

Functions are what give you the ability to
do this. Often, you can't see how the
whole program works, but you can build it
one function at a time.

Bite Size Pieces

Functions are the little bite sized pieces
that you can break your program up into
and easily tackle one piece at a time.
Sometimes a function will do nothing
more than call some other functions.
Writing these types of functions gives you
that ability to organize your thoughts on
what the rest of the program should do.




Not So Bite Sized Pieces

Quite often you will find that there are
groups of functions that go together in
some logical way to solve a problem and
are somehow logically separate from the
rest of your code.

These larger chunks are often called
modules and when done well they can be
reusable as libraries.

It is good programming practice to reduce
the dependencies between modules.

The Software Lifecycle

The process of making software is often
broken into 5 pieces (not always linear).

Analysis - Figuring out what the problem you
are trying to solve really is.

Design - Decide how to solve that problem in
code.

Implementation - Write the code.

Debugging - Find and correct the problems in
your code.

Maintenance - Changes and fixes for users.

Role of Modularity

Modularity plays a big role in the last four
phases of the software lifecycle.

Building good modules into the design
makes it easier to keep the code
organized.

Modules can be tested/debugged
independently much of the time.

Changes made to one module should
have a limited effect on other parts.




Code

Let's expand on our Mandelbrot set
calculations to introduce more functions
into the game. We will make a program
that outputs a file that does something
that we might be able to read in and
display as an image.

Minute Essay

What does it mean for modules to be
independent?

We will have a review session today that
starts at 4:00pm and goes until I don't
have any more questions. I'll also come
up and do another one Sunday starting at
noon. I don't prepare anything for them.
I just answer questions.




