Recursion

10-23-2002

Opening Discussion

What did we talk about last class?

Do you have any questions about the
assignment? Don't let problems hang you
up too long.

What happens in C when a function calls
another function? What about when a
function calls itself? Can we utilize this to
do interesting things?

Min Element of 2D Array

Return does not mean print.
int mnE en(int a[][10],int len) {
int mn=a[0][0],],k;
for(j=0; j<len; j++) {
for(k=0; k<10; k++) {
if(a[j][kl<min) {
mn=a[j][k];
}
}
}

return mn;




Recursive Functions

We have looked at functions calling other
functions, but what about when they call
themselves? A function that calls itself is
called a recursive function. They are
heavily used in the mathematical theory
of CS, but they can also be incredibly
powerful tools in our code.

There are some problems that are easy to
solve with recursion, but extremely hard
to solve without it.

Recursion and the Stack

The real key to recursion is that one the
stack, every call to the function gets its
own stack frame and hence its own copy
of all the local variables and arguments.
This gives recursion some “memory” that
it can go back to when functions return.
Languages that don't use a stack for
function calls can't be used for writing
recursion.

Looping with Recursion

The simplest use of recursion is simply to
implement a loop. When doing this,
typically a function takes a value as an
argument and calls itself with a larger or
smaller value of that argument.

The recursive call has to be conditional.
Otherwise it is like an inifinite loop, but
this type causes a stack overflow and a
segmentation fault.




Recursion in Multiple
Directions

Recursion is more powerful (and more
useful) when the function contains two or
more possible calls of itself. In this case,
a loop can't be easily used as a substitute
without major logic modifications.
Drawing out the call path of these types
of functions produces what computer
scientists call a tree.

The Fibonacci numbers are a simple
example.

Recursive Fibonacci
Numbers

Notice how incredibly similar it is to the
recurrence relationship that we started
with. Unfortunately, in this case recursion
is very inefficient because work is
repeated frequently.

int f(int n) {
if(n<3) return 1;
return f(n-1)+f(n-2);

Flood Fill

If you have used a painting package, you
are familiar with the idea of “filling” the
area around a specific location with a
certain color.

One way of doing this easily in code is
with a recursive function that calls itself
up to 4 times if adjacent pixels are blank.

Let’s write a bit of code for this.




Debuggers

You can get help with finding runtime errors,
and to some extent logic errors as well.
Hopefully you have already used the practice of
putting extra printf statements in code to help
you figure out what it is doing. If you compile
with the -g option you can also use a debugger.
The debugger on these systems in gdb. You
run “gdb a.out” (or whatever your program
name is). Typing run at the prompt starts your
program. You can pipe things in there too.

More on the Debugger

When a fault occurs (could be you hitting ctrl-C)
you can type in “where” to get a stack trace
including line numbers.

The command print will print out variable
values.

Use quit to get out.

There are also many other powerful features in
the debugger that allow you to set break points,
return from functions, continue after breaks,
etc. Use help to see these.

Minute Essay

Is it clear how recursion works? Do you
see how a loop can be converted to a
recursive function that calls itself once? It
is clear to you how recursive functions
that call them selves more than once are
different from loops?

Assignment #5 is due today at midnight.




