Dynamic Memory and
Structures

11-14-2003

Opening Discussion

What did we talk about last class?

Do you have any questions about the
assignment? Remember that the way it is
being done now it counts for twice as
much as other assignments so you want it
to be done perfectly.

Problems with Memory
Management

Dynamic memory is great in many ways.
It gives us a lot of flexibility that we don't
have without it. However, it has some
serious hazards that come along with its
use.
Memory leaks - If you don't free memory that
you allocate you eventually run out.
Dangling pointers - If you try to use memory
that has been freed you can cause big
problems.




Dangling Pointers

A dangling pointer is a pointer to memory
that you should no longer be using. You
get them when you free a block of
memory, but you don't destroy the
pointer to it and later you try to use that
memory. This can cause bugs that are
very difficult to track down.

To prevent this, you should always store
NULL in a pointer after freeing it unless it
is going to pass out of scope immediately.

Structures in Memory

Last time we talked about structures, but
we didn't really discuss what they look like
in memory.

As you might expect, a struct simply gets
a chunk of memory big enough to hold all
its members.

What the dot notation does is to add the
proper offset to the address of the
structure to get the member with that
name.

Pointers to Structures

When we have a pointer to a struct we

have to dereference it to get to the

members in that struct.

There is a shorthand notation for this that

uses an arrow, ->. This is just a

shorthand for a dereference and a dot.
var - >menber = (*var). nenber

This is helpful in many situations. Since

we often pass pointers to structs you
might see this more than a plain dot.




Arrays of Structures and
Arrays in Structures

We used this in code last time, but we
should be explicit with how we use these.
For an array of structures the brackets
need to go by the variable name, before
the dot/arrow (if there is any).
Remember the offset is the size of the
type.

When the member is an array the
brackets go after the member name.

2-D Dynamic Arrays

We can make multidimensional arrays in C
by simply having pointers to pointers [to
pointers [to pointers ...]].

For 2-D, in memory we have a pointer to a
dynamic array of pointers and each of those
points to an address with an array of the
proper type.

Note that this can create non-rectangular
arrays. Managing lengths can be a problem.

Minute Essay

What questions do you have about
today’s material? What is unclear to you
about the use of structures or dynamic
memory?

After today we switch gears for a bit and
talk about the string libraries then sorting
and searching.




