Intro to C Programming

9-17-2003

Opening Discussion

Do you have any questions about the
quiz?
What did we talk about last class?

Minute Essays Replies

Yes, everything on a computer is a mathematical
operation. The whole theoretical basis of
computers comes from notions of formal systems
in math.

Computer memory is a single long strip of bits.
The processor requests them in certain sized
chunks. “Op codes” tell what instruction is.

The sign on a floating point is a bit. 1=negative.
Xor only returns 1 if two values are different.
2734=2*%824+7*8+3=128+56+3=187




More Minute Essay Replies

Only difference between negative number and
large positive is how you interpret it.

This material will only directly appear in this
class if you do some graphics options. Hex is
one exception because we typically print
pointers as hex.

C++ is almost a superset of C. It pastes object
oriented features on C. However, good C++
programs are very different from good C
programs. C++ allows operator overloading so
<< and >> are used for input and output.

More Minute Essay Replies

When converting binary to hex figure out what
the decimal value of the 4 binary digits is first.
Then if it's greater than 9 figure out letter equiv.
You will need to understand the different types
in C and we will talk more about them as the
semester goes on. Some conversions are
implicit, but not all (signed to unsigned isn't).
You could use << to find powers of two. For
floating point numbers it is done in hardware
instead.

Binary fractions.

A First Example

We will now look at some code that we
started to write and add a bit more to it.

At this point I would like to note that in
many ways programming is a creative
endeavor. When you write a program you
bring something into existence. You take
your thoughts and formalize them into
something of substance. Unlike static art,
this medium is nearly always dynamic.




Compiling and Executing

Computers don't understand C code, they only
understand machine language. For this reason
we have compilers. They are programs that
convert high level languages to machine code.
The compiler you will use in this class is gcc. A
man on gcc will give you the many options
possible. Here are some:

-0: Executable output name. a.out is used be default.

-g: Include debug information.

-Wall: Print all warnings.

-pedantic: Only accepts tighter code.

Parts of a C Program

#include lines: These lines tell the compiler what
libraries you will be using and basically paste
their code at the top.

main: All C programs have a main and this is
where the execution of the program begins.
Main is a function. We will talk more about
functions later. The body is inside curly
brackets: ‘{* and ‘}'.

Comments: All text between a /* and a */ is
comments and are ignored by the compiler.
They can span lines.

Statements

The body of the main function consists of
a series of statements that are executed in
order, top-down and left-right.

All statements end with a';'. What comes
before the *;" must be a valid C expression.

Note that the statements in main are
indented beyond the declaration of main.
C ignores extra white space in the
program.




Expressions

An expression can be one of the following:
A number
A string literal
A variable name
A function call
Two expressions separated by an operator. For this,
C must be able to perform the operation on the types
of the expressions. Can include parentheses.
An “atomic” elements is called a token. The
first three are tokens and adding white space
changes their meaning.

Types and Variable
Declarations

C is a typed language so all expressions in
C have a type. C has the following types:
char, short, int, long. These all represent
integers and can be signed or unsigned.
float, double, long double. These represent
floating point numbers.
When you want to keep track of a value in
C you declare a variable of the correct
type. A variable declaration has the form
of “type namel;”.

Operators

Complex expressions in C are built with
operators. Here are the numeric operators
available that take two arguments.
+, -, *, [: Do what you would expect.
%: Modulo, the remainder after division.
<<, >>: Bit shifting operators.
&, |, ~: Bitwise and, or, and xor.
Here are operators that take one argument.
-: Negative.
~: Bitwise negation.
Tertiary Operator, ?:, takes 3 arguments.




Assignment

There is also an operator ‘=" that is an
assignment operator. It stores the value
of the expression on the right hand side
into the memory for what is on the left
hand side.

For the time being the only thing that will
ever appear on the left hand side is a
variable.

You can do this in a variable declaration.

Functions

The last somewhat atomic type of
expression listed was a call to a function.
You can use functions that exist in other
libraries, like printf in stdio, right now. A
bit later, we will learn how to define our
own functions to help break up problems
into smaller pieces.

Function calls give the name of the
function followed by an argument list in
parenthesis.

printf the Short Version

The printf function is how you will print
things to screen. It allows you to do
formatted output.
For now you can think of its argument list
as a format string followed by values to
be put into that string at the %? tokens.

%(d is for decimal integer

%f is for float

%c is for character

%X prints an integer in hex




Minute Essay

Write a short C program that declares one
integer variable (you pick the name) and
stores the value of 2+2 in it.

Read chapter 3 for next class. The
second half of the assignment could prove
very challenging if your only information
comes from lecture. Come to the next
class armed with questions.




