
1

Pointers/Multidimensional Arrays

10-17-2006



2

Opening Discussion

■ Midterm results.
■ Do you have any questions about the reading?
■ What did we talk about last class?  Let's go look at 

the code because that was a while ago.
■ Do you have any questions about the 

assignment?



3

Pointers

■ We have talked about basic types in C and last 
time we introduced the idea of an array type. We 
can also create variables of pointer types.

■ The name really says what a pointer is. A pointer 
variable points to some other part of memory. 
Technically it stores a memory address and you 
can follow that address to get to the memory that it 
refers to.

■ Following a pointer to see what it points at is 
called dereferencing.

■ You can make a pointer type of any type and that 
is a new type. As such, you can make pointers to 
pointers and so on.



4

Pointer Syntax

■ We declare a pointer variable using *. You saw 
this when we declared our FILE * variables for 
files. The variables fin and fout were pointers to a 
FILE. Put a * between the type and the name and 
you get a pointer. You can put more than one * in 
there as well.

■ If you want to get the address of a memory 
location use the & operator.  The & operator adds 
a * to the type.

■ If you want to follow a pointer you use the * 
syntax. So the * operator removes a * from the 
type.  (How is that for confusing?)

■ a[i]==*(a+i)



5

Pass by Reference

■ We have had times when we wanted to return 
multiple values from a function, but the C syntax 
only allows a single return type.

■ To get around this we pass in pointers. This is 
commonly called “pass-by-reference”. What we 
have normally done is called “pass-by-value”.

■ When you pass something by reference that 
pointer is passed by value, but you can follow the 
pointer and modify the original memory.  (Swap 
function)

■ 1-D arrays are basically pointers with memory 
allocated. All arrays are passed as pointers.

■ Helpful but problematic.



6

Multidimensional Arrays

■ Use as we can make pointers to pointers, we can 
also make arrays of arrays. These are 
multidimensional arrays.

■ What does the syntax of a multidimensional array 
look like?

■ Multidimensional arrays are not pointers to 
pointers (despite very similar syntax). What must 
you do that is special when you pass a 
multidimensional array?



7

Searching Arrays

■ If I give you an array and ask you to find a 
particular value, what will you do? How many 
elements will you have to look at on average?

■ If I tell you the array is in sorted order what can 
you change in your search? How much more 
efficient would this method be?



8

Minute Essay

■ We covered a lot of stuff today, including a lot of 
syntax.  Do you have any questions about this 
material?

■ Remember that assignment #4 is due on 
Thursday.


