
1

Dynamic Memory

10-31-2006

2

Opening Discussion

■ Do you have any questions about the quiz?
■ What did we talk about last class?
■ Do you have any questions about the reading?
■ Do you have any questions about the

assignment?
■ How to compare strings without []. I got some

correct solutions, but none were optimal.

3

Dynamic Memory and the Heap

■ So far we have always talked about the computer
giving us memory from the stack when we call
new functions. This memory is supposed to be
fixed in size, and it stops being valid once we have
exited a function.

■ Sometimes you need memory that is dynamic and
size and which exist across a broader range of
functions. For this we have the heap.

■ Heap memory sits at the opposite end of what a
program has access to from the stack and the two
grow toward one another.

■ The heap is less organized, but “costs” more to
deal with.

4

The malloc Command

■ The most basic memory allocation command in C
is malloc. Use the man pages to see the form of
this function.

■ Notice that it returns a void*. You will need to type
cast this to the specific pointer type that you want.

■ What you pass into malloc is the size of the chunk
of memory that you want. Typically you specify
this with the help of the sizeof operator. That
makes for more portable code.

■ malloc returns just a pointer to that chunk of
memory. As with all pointers, it does not know how
much memory it points to. You can treat this
pointer as an array.

5

calloc and realloc

■ There are two other memory allocation commands
in C. I have to admit that I never use them.

■ calloc basically does the same thing as malloc,
only it initializes the memory to zero while malloc
leaves it as garbage. The format for calloc is also
different to reflect it is intended for arrays.

■ The realloc command will try to “change the size
of a memory block”. This can be an expensive
command and might actually allocate a new,
larger chunk of memory and copy stuff over from
the original chunk.

6

free

■ Any time you allocate memory you need to
deallocate it later. The reason for this is that unlike
the stack, nothing ever “pops” off the heap unless
you tell it to. Failure to free memory is called a
memory leak and over time it will cause a long
running program to consume more and more
memory until it runs out and crashes.

■ For the free command you simply pass in the
pointer to the memory that you are no longer
using. It will then be returned to the heap so that
later on you could get it back through a call to
malloc, calloc, or realloc.

7

NULL Pointers

■ NULL is a pointer value that is always known to be
invalid.

■ If any of the memory allocation commands can't
get the requested memory they will return NULL,
just like fopen did.

■ I highly recommend that you initialize pointers to
be NULL. It is basically impossible to tell if
garbage is a valid pointer or not, but NULL you
can check against.

8

Applications of Dynamic Memory

■ What are some applications where having
dynamic memory could be helpful?

■ How should you choose between dynamic
memory for arrays and static memory?

9

Dynamic 2-D Arrays

■ How can we make structures like 2-D arrays using
pointers?

■ What abilities do we have with dynamic 2-D arrays
that we didn't have with the static ones?

10

Playing with Strings

■ If I tell you to write a program where you have to
print out the length of a string, how will you do it?
What about copying a string (like doing an
assignment, but with strings)? How would you
compare if one string comes before another
alphabetically?

■ All of these things can be done with fairly simple
functions that loop over the arrays. They are so
common though that there are library routines to
do them and other things.

■ Next class we will go into the details of playing
with strings both with and without library aid.

11

Minute Essay

■ Assume the user has input a number into int num.
Create a triangular 2-D array where the first row
has 1 element, the next has 2, and so on until the
last has num elements in it.

■ Assignment #6 is due on Thursday.

