
1

Binary I/O

11-16-2006

2

Opening Discussion

■ What is a union? What are they intended to allow
you to do in a program? What are the issues with
unions?

■ What should you be thinking of doing to optimize
certain recursive functions?

■ Do you have any questions about the
assignment?

3

Optimizing Recursion

■ We started making a change to our maze solver
that would be faster than our original solution.
Let's finish that off today.

■ What are some other types of pruning that we
could do for optimization?

4

Recapping Text Files

■ All the files we have talked about so far have been
text files.

■ Text files have a number of advantages.
 Programatically, they are fairly easy to deal with.

fprintf and fscanf are very much like printf and scanf.
 You can edit a text file with any text editor and look at

them with things like more and less.
■ Text files also have some significant

disadvantages.
 You read straight through them and can't jump around.
 Data is not at all compressed. This is why zipping a

text file can shrink it so much.
 Reading large text files is very slow. A lot of work must

be done to convert from the text format to what is in
memory.

5

Binary Files

■ The way to get around the problems with text files
is to use binary files. Of course, this means you
lose all the advantages of text files as well.

■ It turns out that most programs use binary files. If
you have ever looked at a Word document with a
text editor or something that shows you what it
really contains, you know that it is not flat text.

6

Opening for Binary Access

■ If you want to use a binary file, all you have to do
is put a 'b' in the mode string. So instead of using
“wt” we would use “wb” if we want to make a new
binary file to write to.

■ All the other issues with fopen stay the same.
■ Actually, you can do some binary access stuff if

you open the file the other way, but you shouldn't
because some functionality will be limited.

7

fread and fwrite

■ After you have opened your binary file you need to
read from it or write to it.

■ These operations are going to be done with fread
and fwrite. Look at the man pages to see what
these calls look like.

■ The beauty of freak and fwrite is that they
basically move information straight from memory
to disk and back. This makes them very fast.

■ Let's write some code that uses this.

8

Direct Access

■ The biggest advantage of binary files is not that
they are fast and efficient. Those are very
significant, but even better is that you can jump
around in them randomly.

■ This direct access ability lets you move to any
point in a binary file and start reading or writing at
that point. This is great because it allows you to
treat a binary file almost just like an array.

■ The binary file will be slower than a real array, but
it can be much larger and it will be much faster
than completely rewriting text files.

■ Let's look at this idea a bit closer for a file with
fixed length records.

9

fseek

■ The way we jump around in files is with the fseek
command.

■ Let's go look at the man pages to see how this
command works.

■ Now we want to write some code that uses this
command.

10

Variable Length Records

■ We aren't going to code these, but binary files
don't have to be made out of lots of pieces of the
same size. You can use different sized pieces if
you spend a little space to store an index of where
each piece goes.

11

Pointers in Binary Files

■ How do structures work in binary files?
■ What happens if the structure contains a pointer?

12

Minute Essay

■ What types of applications might really benefit
from binary files?

■ Remember to turn in assignment 7/8 today.

