
1

Machine Arithmetic

8-31-2006

2

Opening Discussion

■ Sorry I let you out early last class. My brain was
stuck on an MWF schedule.

■ What did we talk about last class?
■ Do you have any questions about the reading?

3

Getting to Linux from Dorms

■ One of the advantage of Linux is that it can be
accessed remotely. You don't want to do that with
these machines because they are dual-boot and
people are likely to reboot them. However, we
have a number of Linux only machines that you
can safely log into from your dorm room and work
on. (Xena01-Xena21)

■ To connect to those machines you can use either
Putty or a Linux terminal like Cygwin. There are
links to both of these on the links page. Putty is
simpler and just gives you a connection. Cygwin
makes your Windows machine act like a Linux
box.

4

Working with vi

■ Now that we have moved around in Linux some, it
is time to move to editing text files. I will ask you to
use vi as your text editor in this class. It is a nice
text editor for programming because it was built
for that purpose.

■ First we should use vi to edit some of the settings
of vi. This will make vi more functional for coding.

■ vi has two modes: command mode and edit mode
(technically there are several types of edit mode).
You start off in command mode. Typing in
command mode doesn't actually type, it gives
commands. Certain commands cause you to enter
an edit mode. Press esc to get back to command
mode.

5

Writing a C Program

■ Now I want you all to go into your class directory
and use vi to edit a file for a C program. You can
call the file whatever you want, but it needs to end
in “.c”.

■ Let's write a program that lets you input two
integers and then prints out their sum, difference,
product, and quotient.

6

Redirection Under Linux

■ We have talked about some of the power of
command line processing. Being able to add
arguments to commands is a big benefit we have
talked about.

■ Another benefit is that we can redirect input and
output in Linux. This means we can have
programs write to files instead of to the screen.
We can also have them read from files instead of
the keyboard.

■ We even have the ability to make the output of
one program become the input of a second
program. Let's look at this.

7

Math on Computers

■ We've talked about the fact that computers use
binary numbers for representing everything. Your
book even went into some detail on the different
types of numbers which we will hit on more next
class.

■ How would you do some of your standard math
operations using binary numbers? Can you do
addition in binary? What about multiplication?

■ Let's look at these two operations first.
Subtraction will wait until next class. How about
division?

■ What types of operations are really simple in
binary?

8

Negative Integers

■ Your book covers three ways that we could do
negative numbers on a computer. What are they?

■ Obviously the computer only does one. Which
method to modern machines use and why?

■ Let's go into more detail for this method and
produce the negative binary forms of some
different numbers.

9

Types in C

■ The book goes into a fair bit of detail on types in
C. This is a good thing and if you continue in CS
you will need to know these details.

■ For this class we will likely only use four types.
 bool when we need just true or false
 char when we need characters
 int if we need integers
 double if we need fractional values (floating points)

■ We typically won't care about “wide” characters,
different sized integers, unsigned integers, or
single precision floating point values.

■ I could put complex into some assignments if I can
think of some good examples.

10

Floating Point Values

■ Most modern machines have built in ability to
handle fractional values with floating point
calculations.

■ Floating point can be contrasted to fixed point.
The latter has a certain number of bits above and
below a binary point (it's not a decimal point when
you aren't working in decimal).

■ Floating point is represented like scientific notation
in binary. The main thing you should know about
it is that these aren't truly real numbers. They
aren't continuous and math with them is imprecise.

11

Testing Math Operations in C

■ We can use C to test some of the things we have
talked about. This is because C has ways to
understand hexadecimal numbers and to print
them out as well. We can also play tricks that I
don't expect you to understand to print floating
point values as hexidecimals.

■ You book talks about printing integers by putting
%d in format strings for printf. If you use %x you
will get the value in hex. This and other things can
be found in the man pages as well as in later
chapters.

12

Expressions and Statements

■ So far we've just been writing C code without
really explaining much about it. Programming
languages in general have a rigid syntax, they
don't have all the exceptions of written languages.

■ C, like most other programming languages, can be
described as being built from statements, that are
made from expressions that are built from tokens.

■ Let's go look at some of the code we did today
and see if we can pick out the pieces. Your
reading for next class will present things more
formally.

13

Minute Essay

■ Add the following three binary numbers? Assume
the answer is going into an 8 bit value so there are
no issues with overflow.
 111
 110
 011

■ Remember to read chapter 3 for Tuesday. Also
keep in mind that the first quiz is on Tuesday and
assignment #1 is due in a week.

