
1

Structure of C Programs

9-5-2006

2

Opening Discussion

■ Do you have any questions about the quiz?
■ Did everyone get to enjoy their 3-day weekend?
■ What did we talk about last class?
■ Do you have any questions about the reading?

3

Floating Point Values

■ Most modern machines have built in ability to
handle fractional values with floating point
calculations.

■ Floating point can be contrasted to fixed point.
The latter has a certain number of bits above and
below a binary point (it's not a decimal point when
you aren't working in decimal).

■ Floating point is represented like scientific notation
in binary. The main thing you should know about
it is that these aren't truly real numbers. They
aren't continuous and math with them is imprecise.

4

Testing Math Operations in C

■ We can use C to test some of the things we have
talked about. This is because C has ways to
understand hexadecimal numbers and to print
them out as well. We can also play tricks that I
don't expect you to understand to print floating
point values as hexidecimals.

■ You book talks about printing integers by putting
%d in format strings for printf. If you use %x you
will get the value in hex. This and other things can
be found in the man pages as well as in later
chapters.

5

Pieces of C Programs

■ Programs in most programming languages are
made out of statements that are grouped in
various different ways. C is no exception to this.

■ The statements come in multiple forms, but can
contain expressions that produce values.

■ A compound statement is multiple statements
inside of curly braces.

■ Let's look at some of the code we wrote last class
and pull apart the various statements and
expressions. What are the operators and
operands that we used?

6

Assignment

■ In an imperative language, like C, one of the most
significant operators is the assignment operator: =.

■ This appears with an expression on the left that
evaluates to a memory location (a variable for
what we are doing now) and an expression of a
“matching” type on the right.

■ When a statement with an assignment is reached,
the RHS is evaluated and its value is stored in the
LHS.

■ C also provides shortcuts to do binary operations
and assignment in a compact form: +=, -=, *=, etc.

■ Write a program to calculate the cost of gas for a
trip in multiple steps.

7

++ and -- : Prefix vs. Postfix

■ It turns out that adding and subtracting 1 are such
common operations that they have their own
operators in C.

■ The ++ and -- operators can be used either in
postfix or prefix (before or after the operand). The
only difference is what the expression returns.

■ When expressions change variables they are said
to have side effects. This includes assignment
and the various assignment operators as well as
increment and decrement. Good programming
form makes side effects explicit.

■ Multiple alterations to a single variables in a
statement produces undefined results.

8

Modulus

■ C includes some operators you might not be
familiar with. One of these is the modulus
operator. It works on integers and returns the
remainder after division. For example, num%2
would be 1 for odd numbers and 0 for even
numbers.

■ Modulus is a remarkably useful operator when
doing math on computers.

■ Let's put some code into our program so that we
can enter our average speed and get the time it
will take to make the trip in hours, minutes, and
seconds.

9

Bitwise Operators

■ There are some operators that appear in the front
cover of the book that aren't covered in chapter 3,
but that relate do our discussion of binary
numbers and binary arithmetic.

■ C has certain bitwise operators that allow you to
play with the bits in numbers.
 ~ : bitwise not or ones complement
 << : left shift
 >> : right shift
 & : bitwise and
 ^ : bitwise xor
 | : bitwise or

■ A common use of these is packing colors into an
ARGB int.

10

Type Casting and Type Conversion

■ One type of expression that might seem odd to
you is the type casting operator. You use this
when you want to force the type of an expression
to be something.

■ An example is when you want to divide two values
and you have them stored in ints, but you want the
fractional value.

■ C also does implicit type conversions when you
operate on two expressions with different types.

11

Questions on Chapter 3

■ Do you have any questions on chapter 3 that
weren't covered in class today?

12

Functions

■ The primary focus of this class is on problem
solving. It turns out the most important aspect in
solving large problems is figuring out good ways to
break them up.

■ So far our code has all gone in a main function
and it executes straight from the top to the bottom.
 Our ability to break things up is rather limited.
Every time we want to do something we have to
enter the commands to do it.

■ Functions allow us to break our solutions into
pieces and call on those pieces as needed. Not
only does this break things up, it allows us to
reuse common chunks of code.

13

Minute Essay

■ What would the values of num1 and num2 be at
the end of this code?
 int num1=5,num2=3;
 num1+=7;
 num2=(num1++);
 num1%=5;

■ Remember that there is open lab in this room this
afternoon. Also remember that assignment #1 is
due on Thursday.

