
1

Scope and Problem Decomposition

9-12-2006

2

Opening Discussion

■ What did we talk about last class?
■ Why do we want to use functions in our code?
■ Do you have any questions about the reading?

3

Scope

■ Everything you declare in a programming
language has a range of statements that it can be
accessed over. This is called its scope.

■ Scoping in C is extremely simple. There are two
types of scope, local and global.
 Global scope means something is visible anywhere

between the declaration and the end of the file.
Anything that isn't declared inside a code block (inside
curly braces) is global. This includes all functions and
any variables you declare outside the functions
(generally a bad idea).

 Local scope goes from the point of declaration down to
the end of the code block it was declared in. Function
parameters have local scope.

4

Why to Scope?

■ Small scopes reduce complexity. Without them,
programs quickly become a tangled mess. They
also allow you to reuse names. Without local
scoping every variable you ever create would
have to have a unique name.

■ There are times, as we saw last class, when
global scope seems to make things easier.
However, this is an illusion created by small
programs. The bigger the program gets, the more
problems you will run into with global variables.

5

Scoping and the Call Stack

■ It is worth taking a minute to discuss a detail of
local variables in C, they way they are
implemented in memory. This will be very
significant a bit later.

■ Every time you call a function, that function gets a
chunk of memory to hold the local variables. When
the function returns, that chunk is freed.

■ The chunks are laid end-to-end so they resemble
things being stacked up. Like a stack of books,
you can only easily access the ones in the top
chunk.

■ Let's draw this out on the board.

6

Problem Decomposition

■ Let's solve a little problem now. We'll use one of
my favorite problems, making a ray tracer. We will
only do a little part of it though, but I want to show
how we can take a large problem and break it into
pieces.

■ When breaking problems into pieces, one of the
concerns that should be high on your mind is
whether the pieces are reusable. An ideal
subdivision will make functions that you can use
over and over again.

7

Conditional Execution

■ As you have probably noticed, it's been
challenging to find problems that you can do with
what we have talked about. This is because every
line of code you write always gets executed in
exactly the same order. All that can change is the
values the user inputs.

■ Conditional execution is the concept that you have
have part of the code where certain lines happen
under one condition and other lines happen in a
different condition. This opens the door for much
more complex problems and a lot more flexibility in
what we solve.

8

The if Statement

■ The most common form of conditional execution is
the if statement. It basically says, do something if
a certain condition is true. There can also be an
else part for what to do when the condition is
false.

■ What is done in if or else can be any C statement.
Normally it is a compound statement, many
statements inside of curly braces. Single
statements can be used though some
programmers strictly avoid this.

■ Let's think of how we might use an if statement
and add one to our ray tracing code.

9

Minute Essay

■ What are the primary problems caused by using
global scope for variable? Can you think of any
issues with global scope that I haven't mentioned
yet?

■ Quiz #2 is on Thursday, and assignment #2 is due
a week from today.

