
1

Intro to C and Binary Numbers

8/27/2007

2

Opening Discussion

■ Let's look at three answers to the interclass
question. What are the steps in building a C
program?

■ Do you have any questions about the class based
on what we covered last time?

3

Linux Command Line
■ Let's all log into the machines and spend a few

minutes getting used to the Linux command line.
■ The PDF file on the web lists a number of different

commands in Linux.
■ The Linux directory structure is just like the folder

structure you are used to in Windows. We will
navigate it with text commands instead of clicking.

■ Tab completion is your friend as are up and down
arrows.

■ Command-line execution allows multiple
arguments.

■ The man command will give you the “manual
page” entry for any command. This also works for
C-library routines as we will see later.

4

vi

■ When you are programming you can use any text
editor that you want to. Text editors, unlike word
processors, edit and save straight text. For
comparison, open a .doc file in notepad to see all
the extra stuff that Word throws into a file.

■ I use vi and teach it in this class. It is a powerful
programming editor that is ubiquitous on
Linux/Unix systems.

■ Start vi by entering vi and the name of the file you
want to edit on the command line.

■ There are two modes in vi. You start off in
command mode. Several commands put you an
editing mode. Esc goes back to command mode.

5

Simple C Program

■ Lets go into vi together and edit our first program.
We will call it hello.c. All of your C programs will
be in files that end with .c.

6

Structure of a C Program

■ All of your C programs will have several parts.
■ The top part is pre-processor directives. These

begin with a # sign. They are handled in a
processing step before the compilation of the
program.

■ Next you can declare global identifiers. I will
strongly limit the use of global variables in this
class and generally code in a way where you won't
use this section.

■ Below the global identifiers are your methods.
Your book puts main as the first method. I will
make it last.

7

Comments

■ Comments are pieces of text that are thrown out
when a program is compiled. These are things
you put in for the benefit of humans.

■ You will want to put your name and a pledge of
your code in a comment at the top of each
assignment.

■ Standard C comments are text between /* and */.
They can span multiple lines.

■ C99 allows C++ style single-line comments of the
form //. If you use these you need to put in an
extra compiler flag saying you are using the C99
standard. I generally won't do this.

8

Identifiers

■ Many of the things you put in your C programs will
need names. These names are called identifiers
and they have certain rules.

■ Identifiers can contain letters, numbers, and
underscores. The first character can't be a
number.

■ C is case sensitive so IDENT and ident are two
different identifiers in C.

■ Identifiers beginning with an underscore are
typically used by the system so we won't name
anything that way.

■ I will typically follow the “camel” naming scheme.

9

Compiling and Executing

■ We compile our programs with the gcc compiler.
Simply specify gcc and the name of the .c file you
want to compile.

■ Many different options can be specified as well. I
recommend including -Wall and -pedantic for
stronger error checking. If you want to use C99
features use -std=c99.

■ By default this will make an executable file called
a.out that you can run. The -o option allows you
to specify a different name to use for the
executable.

10

Binary Numbers

■ We like to use the decimal (base 10) number
system, but numbers can be done in any positive
integer base.

■ Because of the simplicity in making the
electronics, computers typically use a binary (base
2) system.

■ In binary each digit is a power of two and the will
have either a 0 or a 1 in it.

11

Converting Decimal to Binary

■ One way to convert binary to decimal is to find the
largest power of two smaller than the number and
subtract that out. That will be a one bit. Each
power of two you skip is a zero bit.

■ Many people prefer the “divide by two” method. I'll
write it here as an algorithm.
 while(n>0)

➔ if(n is odd) write a 1
➔ else write a 0
➔ Divide n by 2 throwing away fraction

■ This second method is related to bit shifting which
we will talk about next week.

12

Hexadecimal and Octal Numbers

■ Computers might work in binary, but writing
numbers with only 1s and 0s can be a real pain.

■ Hexadecimal (base 16) and octal (base 8) are
common substitutes. They are closer to binary,
but don't take nearly so many digits.

■ Hex numbers have 0-9 and A-F. Octal contains
only 0-7.

■ Converting from binary to hex or octal is as simple
as grouping together bit.

■ Starting at the ones bit, group bits in groups of 4
for hex and groups of 3 for octal.

13

Minute Essay

■ In what ways can command line processing be
superior to GUIs?

■ Interclass Problem : Convert the following
numbers from decimal to binary (8 bit), hex (2
digit), and octal (3 digit). Write your answers on
these systems with vi and show some work.
 23
 137

