
1

Intro to C and Binary Numbers

8/27/2007

2

Opening Discussion

■ Let's look at three answers to the interclass
question. What are the steps in building a C
program?

■ Do you have any questions about the class based
on what we covered last time?

3

Linux Command Line
■ Let's all log into the machines and spend a few

minutes getting used to the Linux command line.
■ The PDF file on the web lists a number of different

commands in Linux.
■ The Linux directory structure is just like the folder

structure you are used to in Windows. We will
navigate it with text commands instead of clicking.

■ Tab completion is your friend as are up and down
arrows.

■ Command-line execution allows multiple
arguments.

■ The man command will give you the “manual
page” entry for any command. This also works for
C-library routines as we will see later.

4

vi

■ When you are programming you can use any text
editor that you want to. Text editors, unlike word
processors, edit and save straight text. For
comparison, open a .doc file in notepad to see all
the extra stuff that Word throws into a file.

■ I use vi and teach it in this class. It is a powerful
programming editor that is ubiquitous on
Linux/Unix systems.

■ Start vi by entering vi and the name of the file you
want to edit on the command line.

■ There are two modes in vi. You start off in
command mode. Several commands put you an
editing mode. Esc goes back to command mode.

5

Simple C Program

■ Lets go into vi together and edit our first program.
We will call it hello.c. All of your C programs will
be in files that end with .c.

6

Structure of a C Program

■ All of your C programs will have several parts.
■ The top part is pre-processor directives. These

begin with a # sign. They are handled in a
processing step before the compilation of the
program.

■ Next you can declare global identifiers. I will
strongly limit the use of global variables in this
class and generally code in a way where you won't
use this section.

■ Below the global identifiers are your methods.
Your book puts main as the first method. I will
make it last.

7

Comments

■ Comments are pieces of text that are thrown out
when a program is compiled. These are things
you put in for the benefit of humans.

■ You will want to put your name and a pledge of
your code in a comment at the top of each
assignment.

■ Standard C comments are text between /* and */.
They can span multiple lines.

■ C99 allows C++ style single-line comments of the
form //. If you use these you need to put in an
extra compiler flag saying you are using the C99
standard. I generally won't do this.

8

Identifiers

■ Many of the things you put in your C programs will
need names. These names are called identifiers
and they have certain rules.

■ Identifiers can contain letters, numbers, and
underscores. The first character can't be a
number.

■ C is case sensitive so IDENT and ident are two
different identifiers in C.

■ Identifiers beginning with an underscore are
typically used by the system so we won't name
anything that way.

■ I will typically follow the “camel” naming scheme.

9

Compiling and Executing

■ We compile our programs with the gcc compiler.
Simply specify gcc and the name of the .c file you
want to compile.

■ Many different options can be specified as well. I
recommend including -Wall and -pedantic for
stronger error checking. If you want to use C99
features use -std=c99.

■ By default this will make an executable file called
a.out that you can run. The -o option allows you
to specify a different name to use for the
executable.

10

Binary Numbers

■ We like to use the decimal (base 10) number
system, but numbers can be done in any positive
integer base.

■ Because of the simplicity in making the
electronics, computers typically use a binary (base
2) system.

■ In binary each digit is a power of two and the will
have either a 0 or a 1 in it.

11

Converting Decimal to Binary

■ One way to convert binary to decimal is to find the
largest power of two smaller than the number and
subtract that out. That will be a one bit. Each
power of two you skip is a zero bit.

■ Many people prefer the “divide by two” method. I'll
write it here as an algorithm.
 while(n>0)

➔ if(n is odd) write a 1
➔ else write a 0
➔ Divide n by 2 throwing away fraction

■ This second method is related to bit shifting which
we will talk about next week.

12

Hexadecimal and Octal Numbers

■ Computers might work in binary, but writing
numbers with only 1s and 0s can be a real pain.

■ Hexadecimal (base 16) and octal (base 8) are
common substitutes. They are closer to binary,
but don't take nearly so many digits.

■ Hex numbers have 0-9 and A-F. Octal contains
only 0-7.

■ Converting from binary to hex or octal is as simple
as grouping together bit.

■ Starting at the ones bit, group bits in groups of 4
for hex and groups of 3 for octal.

13

Minute Essay

■ In what ways can command line processing be
superior to GUIs?

■ Interclass Problem : Convert the following
numbers from decimal to binary (8 bit), hex (2
digit), and octal (3 digit). Write your answers on
these systems with vi and show some work.
 23
 137

