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Opening Discussion

■ Let's look at three answers to the interclass 
question.  What are the steps in building a C 
program?

■ Do you have any questions about the class based 
on what we covered last time?
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Linux Command Line
■ Let's all log into the machines and spend a few 

minutes getting used to the Linux command line.
■ The PDF file on the web lists a number of different 

commands in Linux.
■ The Linux directory structure is just like the folder 

structure you are used to in Windows.  We will 
navigate it with text commands instead of clicking.

■ Tab completion is your friend as are up and down 
arrows.

■ Command-line execution allows multiple 
arguments.

■ The man command will give you the “manual 
page” entry for any command.  This also works for 
C-library routines as we will see later.



4

vi

■ When you are programming you can use any text 
editor that you want to.  Text editors, unlike word 
processors, edit and save straight text.  For 
comparison, open a .doc file in notepad to see all 
the extra stuff that Word throws into a file.

■ I use vi and teach it in this class.  It is a powerful 
programming editor that is ubiquitous on 
Linux/Unix systems.

■ Start vi by entering vi and the name of the file you 
want to edit on the command line.

■ There are two modes in vi.  You start off in 
command mode.  Several commands put you an 
editing mode.  Esc goes back to command mode.
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Simple C Program

■ Lets go into vi together and edit our first program.  
We will call it hello.c.  All of your C programs will 
be in files that end with .c.
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Structure of a C Program

■ All of your C programs will have several parts.
■ The top part is pre-processor directives.  These 

begin with a # sign.  They are handled in a 
processing step before the compilation of the 
program.

■ Next you can declare global identifiers.  I will 
strongly limit the use of global variables in this 
class and generally code in a way where you won't 
use this section.

■ Below the global identifiers are your methods.  
Your book puts main as the first method.  I will 
make it last.
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Comments

■ Comments are pieces of text that are thrown out 
when a program is compiled.  These are things 
you put in for the benefit of humans.

■ You will want to put your name and a pledge of 
your code in a comment at the top of each 
assignment.

■ Standard C comments are text between /* and */.  
They can span multiple lines.

■ C99 allows C++ style single-line comments of the 
form //.  If you use these you need to put in an 
extra compiler flag saying you are using the C99 
standard.  I generally won't do this.
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Identifiers

■ Many of the things you put in your C programs will 
need names.  These names are called identifiers 
and they have certain rules.

■ Identifiers can contain letters, numbers, and 
underscores.  The first character can't be a 
number.

■ C is case sensitive so IDENT and ident are two 
different identifiers in C.

■ Identifiers beginning with an underscore are 
typically used by the system so we won't name 
anything that way.

■ I will typically follow the “camel” naming scheme.
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Compiling and Executing

■ We compile our programs with the gcc compiler.  
Simply specify gcc and the name of the .c file you 
want to compile.

■ Many different options can be specified as well.  I 
recommend including -Wall and -pedantic for 
stronger error checking.  If you want to use C99 
features use -std=c99.

■ By default this will make an executable file called 
a.out that you can run.  The -o option allows you 
to specify a different name to use for the 
executable.



10

Binary Numbers

■ We like to use the decimal (base 10) number 
system, but numbers can be done in any positive 
integer base.

■ Because of the simplicity in making the 
electronics, computers typically use a binary (base 
2) system.

■ In binary each digit is a power of two and the will 
have either a 0 or a 1 in it.
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Converting Decimal to Binary

■ One way to convert binary to decimal is to find the 
largest power of two smaller than the number and 
subtract that out.  That will be a one bit.  Each 
power of two you skip is a zero bit.

■ Many people prefer the “divide by two” method.  I'll 
write it here as an algorithm.
 while(n>0)

➔ if(n is odd) write a 1
➔ else write a 0
➔ Divide n by 2 throwing away fraction

■ This second method is related to bit shifting which 
we will talk about next week.
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Hexadecimal and Octal Numbers

■ Computers might work in binary, but writing 
numbers with only 1s and 0s can be a real pain.

■ Hexadecimal (base 16) and octal (base 8) are 
common substitutes.  They are closer to binary, 
but don't take nearly so many digits.

■ Hex numbers have 0-9 and A-F.  Octal contains 
only 0-7.

■ Converting from binary to hex or octal is as simple 
as grouping together bit.

■ Starting at the ones bit, group bits in groups of 4 
for hex and groups of 3 for octal.
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Minute Essay

■ In what ways can command line processing be 
superior to GUIs?

■ Interclass Problem : Convert the following 
numbers from decimal to binary (8 bit), hex (2 
digit), and octal (3 digit).  Write your answers on 
these systems with vi and show some work.
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