
1

Pointer and Pass-by-Reference

10/19/2007



2

Opening Discussion

■ Let's look at solutions to the interclass problem.
■ Challenges with the maze problems. How long 

does it take?



3

Pointers

■ Now we really get into the meat of C.
■ Pointers are variables that store memory 

addresses.
■ We denote a pointer type by adding a * after the 

name of the type. So int* is a pointer to an int.
■ In memory a pointer is just a number.
■ Pointers should always be initialized. A pointer 

that doesn't have a valid value should be set to 
NULL.



4

Pointer Operators

■ We get the address of something in memory with 
a unary &.

■ This is what you have been doing in your scanf 
statements all semester.

■ The & operator returns a pointer to the type of the 
value. You can think of it as adding a * to the type.

■ To tell C to look at a particular address use the 
unary * operator.

■ This follows a pointer to what it points at. When 
you use this you are basically taking away a * from 
the type.

■ Let's play with this some and look at how things 
are laid out in memory.



5

Pass-by-Reference

■ For a while we have had to deal with this limitation 
that C only lets you return one value from a 
function.

■ Pointers allow us to get around this.
■ By passing a pointer to something instead of the 

thing itself we are able to change the original. This 
allows us to have a function effectively return 
multiple things.

■ This is how scanf does what it does and why we 
need the &.

■ Let's look at an example of such a function.



6

Minute Essay

■ Pointers are very low level constructs. They 
expose the underlying machine. What might be 
some advantages and disadvantages of this?

■ Interclass Problem – Write a function that asks the 
user for two numbers and multiplies them. The 
catch is that I want the function to “return” all three 
values back to the calling function.


