
1

More Structures

11/9/2007



2

Opening Discussion

■ Let's look at solutions to the interclass problem.
■ Do you have any questions about the 

assignment?



3

struct Assignment

■ When you do an assignment from one struct to 
another, it copies all the contents over.

■ It is like doing an assignment for each element in 
the structure one after another.



4

Nested Structures

■ As we saw last class, we can nest structures 
inside of one another. This allows us to build more 
complex structures.

■ Let's look at a possible usage of this where we 
build a scene with several geometric objects in it.



5

Arrays in Structures

■ When we declare an array inside of a structure, 
that array adds to the size of the structure.

■ For this reason, structures can become very large.



6

Pointers in Structures

■ Pointers in structures are a bit trickier than arrays.
■ Image a structure where we have a dynamic array 

that we store as a pointer. Now assign that 
structure to another variable. What does this 
produce?

■ Structure assignment does a copy, but it is not a 
deep copy. So pointers have to be treated with 
extreme care.



7

Passing and Returning structs

■ Structures are passed and returned by value.
■ So when you pass a struct to a function it gets a 

full copy. When you return a struct a full copy 
comes out.

■ Returning structs will effectively allow you to return 
multiple pieces of information. It isn't as efficient 
as passing by reference in most situations though.

■ As we discussed last time, a structure will 
normally be passed by reference for efficiency. If it 
shouldn't be changed make it const.



8

Multiple Compilation Units

■ Large programs don't exist in a single .c file. We 
need several of them and we will compile them 
each separately.

■ There can only be one main, but this allows us to 
effectively write library methods and stick them in 
other .c files that are shared among many 
programs.

■ The functions we want to call from the outside 
need to have declarations in a .h file.

■ You can include your own .h files using #include 
“myfile.h”. The double quotes tell the compiler to 
search in the current directory.

■ We compile the .c files separately and then link 
them.



9

Makefiles

■ Compiling separately and linking is a pain. For this 
reason, we have make files.

■ Also, compiling large projects takes a long time if 
you have to compile everything. The make file will 
check dependencies and only do what is needed 
when a few things have changed.

■ The rules in makefiles don't have to compile 
things, but they can. Let's look at a sample 
makefile with some compile rules and some other 
rules.



10

Minute Essay

■ If you have a struct with a variable length array 
that you have malloced, what do you need to do 
when you copy the struct?

■ Interclass Problem – Do problem 30 on page 814.


