
1

Unions and Recursion

11/12/2007



2

Opening Discussion

■ Let's look at solutions to the interclass problem.



3

Motivating Unions

■ There are many instances in programming when 
we would like to have a type that can represent 
one or more other types.

■ Consider our geometry example from last class. 
We wanted a scene made of triangles and 
spheres. In many ways it would be superior to 
have a Geometry type that can be either a sphere 
or a triangle or something else we might add later.

■ In C, the way we get this type of behavior is with a 
union.



4

Unions

■ You can think of a structure as a type that 
contains type1 and type2 and type3, etc. A union 
is a type that contains type1 or type2 or type3.

■ So a struct can be used to hold a bunch of things 
while a union can be used to represent one of 
multiple things.

■ Like structs, a union can either be tagged or used 
with a typedef.
 union TagName {

➔ ContentAlternatives
 };
 typedef union {

➔ ContentAlternatives
 };



5

Using Unions

■ Unions are almost never used alone. You nearly 
always put a union in a struct and often use an 
enum as well.

■ The reason is that the union has no internal way of 
telling you which of the alternatives it is actually 
being used for. So you typically put a union inside 
of a struct where the struct includes a field that 
tells you which option of the union is being used. 
The other field can in just an int or you can use an 
enum.

■ Because of this, code with unions almost always 
includes switch statements.



6

Problems with Unions

■ Using unions requires care because they don't tell 
you which option you are using.

■ This capability of a single type to represent 
multiple types is generally called polymorphism. 
The form we have in C with unions is quite limited. 
We'll see a lot more of this and what we can do 
with it in Java.



7

Recursive Sorts

■ Earlier in the semester we saw three different 
sorts that are simple to write, but are rather slow if 
we have large arrays.

■ We can get better performance in our sorts using 
more complex algorithms.

■ Merge sort and quicksort are more efficient sorts 
that use recursion. They both use an approach 
called divide and conquer where large problems 
are broken into smaller pieces. They differ in how 
they divide the problem and how the recombine 
the pieces.



8

Merge sort

■ Merge sort is simple to describe, but difficult to 
implement.

■ Going down the recursion we divide the array in 
half continually until we get to single elements, 
which are like tiny sorted arrays.

■ As the recursion returns back up the stack we 
merge the sorted pieces. We can merge two 
sorted arrays in linear time. The real work is on 
the way back up.

■ This always gives O(n log n) performance.
■ Unfortunately, merge sort can't be done in place. 

A second array is needed and that hurts efficiency 
and makes it a lot harder to code well.



9

Quicksort

■ Quicksort can sort in place. At each step we pick a 
special element called the pivot. We move 
elements so that the pivot is in its proper place. 
Then we recursively call quicksort on the parts 
below and above the pivot.

■ All the work happens going down the recursion.
■ Expected behavior is O(n log n), but poor pivot 

selection leads to worst case of O(n2).
■ For our code we will just take the first element as 

the pivot. We could easily pick another and swap it 
to the first spot.



10

Minute Essay

■ What is one of the challenges associated with 
using unions?

■ Interclass Problem – Write code that uses a union. 
Try to be creative in what you are using the union 
for.


