
1

Bitwise Operators

11/19/2007

2

Opening Discussion

■ Let's look at solutions to the interclass problem.
■ Do you have any questions about the

assignment?

3

Motivating Bitwise Operators

■ There are a number of situations in which being
able to play directly with the bits in numbers can
be helpful.

■ Consider an application where you must keep a
large number of boolean values.

■ Another is when you need to build a single number
from several other values, often booleans.
 Packing booleans
 Packing RGB values
 Passing multiple flags to a function

4

&, |, and ^

■ There are three binary bitwise operators. That is,
three operators that work on the individual bits in
numbers and take two operands.

■ & is bitwise and. A bit is only turned on in the
result if the bit in that position in both operands is
on.

■ | is bitwise or. A bit will be on in the result if either
of the bits in that position in the operands are on.

■ ^ is bitwise xor (exculsive or). A bit in the result will
be on if it is on in only one of the two operands,
but not both.

5

~

■ This is the bitwise not operator.
■ It is unary.
■ Applied to an integer value it flips the states of all

the bits in that value.
■ Note that ~0 gives you a number with all the bits

on, regardless of the number of bits.

6

>> and <<

■ These are bit shifting operators.
■ They are binary and move the bits in the first

argument either up or down by the number of
places specified in the second argument.

■ The upshift, <<, basically works like multiplying by
a power of two while downshift, >>, is basically
dividing by a power of two.

7

Combining Operators/Masks

■ Combining the different bitwise operators allows
us to specifically check or set any combination of
bits in a number that we want to.

■ This is the real power of bitwise operators.
■ These are often combined with hex literals for

masking off different parts of numbers.
■ ^ allows you to swap ints without a temporary.

Don't bother doing this. It's just a fun trick to know.

8

Assignment Operators

■ All the binary bitwise operators can be used in an
assignment form by putting them before = in an
assignment.

■ So for integers, a*=2 is the same as a<<=1.
■ I find that I use &= and |= fairly often when going

through loops that build values through bitwise
operations.

9

Minute Essay

■ For the fun class would you rather do cover ASCII
based graphics or X11 based graphics?

■ Interclass Problem – Do problem 46 on page 922.

