
1

Stacks and Queues

11/30/2007



2

Opening Discussion

■ Let's look at solutions to the interclass problem.
■ Linked list code.
■ Do you have any questions about the 

assignment?



3

Stack and Queue ADTs

■ Today we are going to talk about two other ADTs 
that are far simpler than lists.

■ The stack and queue ADTs each require two 
methods (and generally have four)

■ Stack
 push – add something to the stack
 pop – remove from the stack

■ Queue
 enqueue – add something to the queue
 dequeue – remove something from the queue

■ Both
 peak – check next this to remove
 isEmpty – tell if it is empty



4

LIFO vs. FIFO

■ The difference between the stack and the queue is 
what element is removed when an element is 
removed.

■ The stack is “Last In, First Out”.
■ The queue is “First In, First Out”.
■ Note you have no control over where things go or 

what you pull out. The order is specified by the 
ADT.



5

Array Based Stacks

■ This is an easy data structure. Just keep an array 
and an integer index for the “top”.

■ When the array fills up make a bigger one.



6

Array Based Queues

■ This is a bit harder. You have to keep track of both 
a “front” and “back” of the queue. The trick is 
making it circular so you don't take up too much 
memory.

■ Modulo is a very helpful operation for making the 
indexes wrap around.



7

Linked List Based Stacks

■ Just as easy as the array based stack.
■ Use a singly linked list and add and remove from 

the head.



8

Linked List Based Queues

■ Perhaps easier than the array based queue.
■ Use a singly linked list and make the head be the 

“front” while the tail is the “end”.
■ It has to go that way because you can't efficiently 

remove from the tail in a singly linked list.



9

Code

■ Let's code these up as time allows.



10

Minute Essay

■ Do the linked data structures make sense to you?
■ Interclass Problem – Look up what a reverse 

Polish calculator is and write one using a stack 
that holds doubles. 


