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Opening Discussion

■ Let's look at solutions to the interclass problem.
■ Linked list code.
■ Do you have any questions about the 

assignment?
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Stack and Queue ADTs

■ Today we are going to talk about two other ADTs 
that are far simpler than lists.

■ The stack and queue ADTs each require two 
methods (and generally have four)

■ Stack
 push – add something to the stack
 pop – remove from the stack

■ Queue
 enqueue – add something to the queue
 dequeue – remove something from the queue

■ Both
 peak – check next this to remove
 isEmpty – tell if it is empty
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LIFO vs. FIFO

■ The difference between the stack and the queue is 
what element is removed when an element is 
removed.

■ The stack is “Last In, First Out”.
■ The queue is “First In, First Out”.
■ Note you have no control over where things go or 

what you pull out. The order is specified by the 
ADT.
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Array Based Stacks

■ This is an easy data structure. Just keep an array 
and an integer index for the “top”.

■ When the array fills up make a bigger one.
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Array Based Queues

■ This is a bit harder. You have to keep track of both 
a “front” and “back” of the queue. The trick is 
making it circular so you don't take up too much 
memory.

■ Modulo is a very helpful operation for making the 
indexes wrap around.
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Linked List Based Stacks

■ Just as easy as the array based stack.
■ Use a singly linked list and add and remove from 

the head.
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Linked List Based Queues

■ Perhaps easier than the array based queue.
■ Use a singly linked list and make the head be the 

“front” while the tail is the “end”.
■ It has to go that way because you can't efficiently 

remove from the tail in a singly linked list.



9

Code

■ Let's code these up as time allows.
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Minute Essay

■ Do the linked data structures make sense to you?
■ Interclass Problem – Look up what a reverse 

Polish calculator is and write one using a stack 
that holds doubles. 


