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Opening Discussion

■ Let's look at some interclass problems.
■ If you played with your program some you 

probably found that it behaves oddly in some 
regards. Why is this?

■ What did we talk about last class?
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Output with printf

■ We have seen printf, but we haven't really used 
the f part of it.

■ Let's look at the man page for printf and see if we 
can figure out what it is saying.

■ Let's play with printf some. We can also use the 
sizeof operator to learn a bit more about the 
primitive types on our system.
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Input with scanf

■ The opposite of printf is scanf. Use this function 
when you want to read input from the user.

■ Let's look at the man page for scanf.
■ At this point, all the variables you pass to scanf 

will need to have & in front of them. This is 
because scanf needs to know where the variable 
is in memory and that is what & does. We'll go into 
more detail about this when we cover pointers.
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I/O Redirection in Linux

■ There is another feature of the command line 
interface that provides tremendous power that we 
haven't discussed yet: I/O redirection.

■ Not only does this make the command line more 
powerful, it will be really helpful on some 
assignments.

■ You can make a program use a file as standard 
input or standard output.
 command < input > output
 You don't have to specify both.

■ The output of one program can be “piped” so 
become the input of another program with |.
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Numbers on Machines

■ We've already said that computers use binary.
■ 8 binary digits, bits, are called a byte.
■ The machine's native size chunk of memory is 

called a “word”.
■ These machines have a 32-bit word. If you have a 

64-bit machine it will use a 64-bit word.
■ We can use the sizeof operator in C to look at the 

sizes of the different primitive types.  What it 
reports is a multiple of the size of a char which is 
normally a single byte.
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Binary Addition

■ Adding binary numbers is quite simple.  You just 
do a lot of carrying.

■ Let's do some examples.  We'll assume we are 
working with 8-bit numbers.  The number of bits 
we have can matter.
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Twos Complement and Subtraction

■ Subtraction is just addition of the negative.  So 
how do we make negatives in binary?  
Remember, you don't have a -. You only have 0 
and 1.

■ There are actually three different ways that 
negatives have been done in binary. Your book 
covers all three, but I will only discuss the one that 
computers today use.

■ Twos compliment is based on the idea that a+(-
a)=0.  So we define -a to be the number such that 
when added to a we get zero.

■ This is possible because we have a finite number 
of bits.  Your book discusses an easy shortcut.
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Bit Shifting

■ In decimal when you multiply/divide by a factor of 
10 you are just moving the decimal point around.

■ In binary the operation of moving all the bits left or 
right is called bit shifting and it is equivalent to 
multiplication or division by powers of two.



10

Multiplication

■ To multiply two binary numbers do standard long 
multiplication. Just remember when you are 
adding that you are adding binary numbers.

■ Note that adding more than two binary numbers 
can get tricky.  It can result in carrying operations 
you have never done by hand in decimal.
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Binary Fractions

■ If the digits in binary start with one and move to 
larger powers of two moving to the left, what 
happens if you put in a “binary point” and move to 
the right?

■ Numbers that have a fixed number of bits with a 
point at a selected position are called fixed point 
numbers. These were popular before floating point 
accelerators became common, but now they are 
only used on specialty hardware with low end 
chips.
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Floating Point Numbers

■ Numbers that can have fractional values are 
represented with floating point numbers on 
virtually all modern machines.

■ Floating point numbers are basically like scientific 
notation in binary.
 v=(-1)s * (1+frac) * 2(exp-bias)

■ Single precision numbers use one bit for the sign, 
8 for the exponent, 23 for the fractional part, and 
have a bias of 127.

■ Double precision uses one bit for sign, 11 for 
exponent, 52 for fraction, and has a bias of 1023.
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Limitations of FP

■ Floating point numbers are not actually the real 
numbers you know from math even though we 
often use them that way.

■ They have limitations because of the fixed number 
of bits.

■ Some of the math properties you are used to for 
numbers don't actually hold for floating point 
numbers.

■ Example: (a+b)+c=a+(b+c)
 Try this with a, b, and c as floats and make a=1e7, b=-

1e7, c=0.01.
■ You also have to be careful of things like 

subtracting two numbers that are almost equal.
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Minute Essay

■ Give me the 8-bit representation of -5.
■ Interclass Problem – Write a program to 

demonstrate potential problems with floating point 
numbers. I suggest using floats instead of doubles 
to make it easier.

■ There is a quiz on Wednesday after the long 
weekend.  It can cover anything that we have 
talked about in class or in the readings.


