
1

Machine Arithmetic

8/31/2007

2

Opening Discussion

■ Let's look at some interclass problems.
■ If you played with your program some you

probably found that it behaves oddly in some
regards. Why is this?

■ What did we talk about last class?

3

Output with printf

■ We have seen printf, but we haven't really used
the f part of it.

■ Let's look at the man page for printf and see if we
can figure out what it is saying.

■ Let's play with printf some. We can also use the
sizeof operator to learn a bit more about the
primitive types on our system.

4

Input with scanf

■ The opposite of printf is scanf. Use this function
when you want to read input from the user.

■ Let's look at the man page for scanf.
■ At this point, all the variables you pass to scanf

will need to have & in front of them. This is
because scanf needs to know where the variable
is in memory and that is what & does. We'll go into
more detail about this when we cover pointers.

5

I/O Redirection in Linux

■ There is another feature of the command line
interface that provides tremendous power that we
haven't discussed yet: I/O redirection.

■ Not only does this make the command line more
powerful, it will be really helpful on some
assignments.

■ You can make a program use a file as standard
input or standard output.
 command < input > output
 You don't have to specify both.

■ The output of one program can be “piped” so
become the input of another program with |.

6

Numbers on Machines

■ We've already said that computers use binary.
■ 8 binary digits, bits, are called a byte.
■ The machine's native size chunk of memory is

called a “word”.
■ These machines have a 32-bit word. If you have a

64-bit machine it will use a 64-bit word.
■ We can use the sizeof operator in C to look at the

sizes of the different primitive types. What it
reports is a multiple of the size of a char which is
normally a single byte.

7

Binary Addition

■ Adding binary numbers is quite simple. You just
do a lot of carrying.

■ Let's do some examples. We'll assume we are
working with 8-bit numbers. The number of bits
we have can matter.

8

Twos Complement and Subtraction

■ Subtraction is just addition of the negative. So
how do we make negatives in binary?
Remember, you don't have a -. You only have 0
and 1.

■ There are actually three different ways that
negatives have been done in binary. Your book
covers all three, but I will only discuss the one that
computers today use.

■ Twos compliment is based on the idea that a+(-
a)=0. So we define -a to be the number such that
when added to a we get zero.

■ This is possible because we have a finite number
of bits. Your book discusses an easy shortcut.

9

Bit Shifting

■ In decimal when you multiply/divide by a factor of
10 you are just moving the decimal point around.

■ In binary the operation of moving all the bits left or
right is called bit shifting and it is equivalent to
multiplication or division by powers of two.

10

Multiplication

■ To multiply two binary numbers do standard long
multiplication. Just remember when you are
adding that you are adding binary numbers.

■ Note that adding more than two binary numbers
can get tricky. It can result in carrying operations
you have never done by hand in decimal.

11

Binary Fractions

■ If the digits in binary start with one and move to
larger powers of two moving to the left, what
happens if you put in a “binary point” and move to
the right?

■ Numbers that have a fixed number of bits with a
point at a selected position are called fixed point
numbers. These were popular before floating point
accelerators became common, but now they are
only used on specialty hardware with low end
chips.

12

Floating Point Numbers

■ Numbers that can have fractional values are
represented with floating point numbers on
virtually all modern machines.

■ Floating point numbers are basically like scientific
notation in binary.
 v=(-1)s * (1+frac) * 2(exp-bias)

■ Single precision numbers use one bit for the sign,
8 for the exponent, 23 for the fractional part, and
have a bias of 127.

■ Double precision uses one bit for sign, 11 for
exponent, 52 for fraction, and has a bias of 1023.

13

Limitations of FP

■ Floating point numbers are not actually the real
numbers you know from math even though we
often use them that way.

■ They have limitations because of the fixed number
of bits.

■ Some of the math properties you are used to for
numbers don't actually hold for floating point
numbers.

■ Example: (a+b)+c=a+(b+c)
 Try this with a, b, and c as floats and make a=1e7, b=-

1e7, c=0.01.
■ You also have to be careful of things like

subtracting two numbers that are almost equal.

14

Minute Essay

■ Give me the 8-bit representation of -5.
■ Interclass Problem – Write a program to

demonstrate potential problems with floating point
numbers. I suggest using floats instead of doubles
to make it easier.

■ There is a quiz on Wednesday after the long
weekend. It can cover anything that we have
talked about in class or in the readings.

