
1

Functions

9/10/2007



2

Opening Discussion

■ Let's look at some solutions to the interclass 
problem.

■ Minute Essay Questions
 Ctrl-C terminates a process (like a program that won't 

quit).
 Difference between int and double.
 Purpose of different operators: sizeof, &, and ++.
 Looking up Linux commands and uses of Linux 

commands (like grep) or slashes in paths. Difference 
between > and >> when redirecting output.

 Hair care.
 void main(void)?
 Importance of Calculus.
 ssh
 Why isn't C like Java?



3

More Minute Essay Questions
 Do we really do binary conversion in C?
 Are basic C concepts central of other programming 

languages?
 Will C ever give a “possible loss of precision” error?
 Why doesn't C have heat breath?
 Goto stigma.
 Do I like fishing?



4

Problem Decomposition

■ One of the most significant skills you should learn 
in this course is how to break problems into 
smaller, more manageable parts.

■ This process is called problem decomposition and 
it is really an art. Good problem decomposition 
leads to good programs. It is also a skill that you 
can use in all facets of your life.

■ The best problem decomposition gives you pieces 
that are flexible and reusable.

■ The term top-down design is used to describe how 
we often decompose problems. We start with the 
full problem and break it into meaningful pieces 
repeatedly.



5

Functions in C

■ In C we decompose problems by breaking our 
program up into multiple functions instead of 
sticking the whole thing in main.

■ You have already written a function in C. That is 
what main really is. The main function is just a 
special function that the program always starts 
with.

■ When a function is called, we go into that function 
and execute the lines in that function. When it 
returns we jump back to where the function was 
called from.



6

Making Your Own Functions

■ In C functions can only be written at the global 
scope. That means you can't put functions in other 
functions or anything else.

■ A function declaration has the following form.
 returnType functionName(type1 param1,type2 

param2, ...)
■ This can be followed by a ; to declare a function or 

by a code block to define the function.
■ I will only include function declarations when they 

are required.
■ Functions must be declared or defined before they 

can be called.



7

Function Parameters

■ You can think of functions just like the things you 
are used to from math. The only difference is that 
C functions can have side effects.

■ We get information into functions through 
parameters. If we don't need to tell a function 
anything we can give void as the parameter list.

■ The list specified in the function definition is called 
the formal parameter list. The values are 
determined when it is called and the passed 
values are called actual parameters. The names 
of formal and actual parameters don't have to be 
related.

■ Let's make a function to see how this works.



8

Pass-by-Value

■ Function arguments are passed by value in C. 
This means that the function gets a copy of what 
is passed.

■ Changes to the copy have no impact on the 
original.



9

Function Returns

■ A function gets information back to where it was 
called by a return value. If a function doesn't return 
anything we can specify void as the return type.

■ In C a function can only directly return one value. 
We'll see ways of getting around this later in the 
semester. Your book describes one method, pass-
by-reference, in this chapter.

■ A return statement needs to be put in any function 
that doesn't return void and it includes an 
expression with the value to be returned.



10

Function Expressions

■ Because functions return values, they are valid C 
expressions and can be used in any place where 
we expect an expression to occur.

■ When the function call is reached, control goes 
into the function and it executes until it reaches a 
return statement.

■ The returned value is used as the value of the 
expression.



11

Minute Essay

■ Write a function called timesTwo that takes a 
single double as an argument and returns twice 
that number.

■ Interclass Problem – Write two functions. One 
returns the sum of three numbers and the other 
returns the product of three numbers. Include a 
main to test that they work.


