

Argument Passing

10-4-2010

Opening Discussion

 Interclass problems. (We won't give them on
days assignments are due in the future.)

Higher Order Methods

 The most powerful methods are ones you can
pass functions into.
 exist, forall – Boolean checks like for math.
 filter, partition – separate collection based on

Boolean.
 map – apply function to all the elements.
 reduceLeft – apply function moving through

collection
 foldLeft – apply function moving through, but

allows initial value so it can return a different
type. This is curried.

Let's Put These Into Action

 I want to spend some time playing with these
methods and seeing what we can do with them.

 A String is a collection so you can do these
things with a String as well.

Variable Length Argument Lists

 You can make functions that don't specify
exactly how many arguments they take.

 These are often called var-args.
 To do this, but a * after the type. It can only be

the last argument in a list.

Calling Var-Args with Collections

 It is often helpful to call a var-args method
passing a collection for the variable length
arguments.

 You can do this, but you have to tell Scala what
you are doing.

 Follow the collection with :_* to do this.
 The : is like specifying a type.
 The _ says you don't care about the exact type.
 The * is like the * in var-args declarations.

Aliasing and Mutability

 I argue that immutable collections like Lists can
be safer than mutable ones like Arrays.

 One of the big reasons for this is aliasing.
 An alias in programming is just like in normal

life. It is a second name for something.
 Variables are really references to objects.
 If a second variable is assigned the same value

as the first, they are aliases to that object.
 Let's play with this and draw on the board.

Aliasing for Argument Passing

 When you pass arguments, you are really
passing references.

 So arguments in functions are aliases to the
objects outside the function

 If the object is mutable, the function can change
it.

Pass-by-Name

 There is another way to pass things in Scala
called pass-by-name.

 When you pass something by name, it isn't
evaluated at the time it is passed. Instead it is
turned into a function and that function is
evaluated every time the variable is used.

 The syntax is to put an => before a type, but
not have an argument list before the arrow.

Fill and Tabulate

 There are two other ways of creating
collections: fill and tabulate. Both are curried.
Second argument to fill is by name, second
argument to tabulate is a function.

 The fill method on Array or List takes a first
argument of how many elements. After that is a
by-name parameter that gives back the type
you want in the array or list.

 Tabulate also takes a size first. After that is a
function that takes the index.

Minute Essay

 What questions do you have about collections?
 Remember to do assignment #3.
 Interclass problem:

 None as assignment #3 is due on Wednesday.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

