The for Loop

10-8-2010



Opening Discussion

Solutions to the interclass problem.
Minute essay comments:

Can you forget about recursion and only use loops?



The for Loop

The most commonly used loop in most

languages is the for loop. The Scala version is
a bit different from most.

Often used for counting:
for(i<-1t010){ ...}

In general it is a “for each” loop that goes
through a collection.

for(e <-coll){ ... }

Variable takes on value of each element in the
collection.



Range Type

Range types provide an easy way to make
collections for counting.

“to” and “until” operate on numeric types to
produce ranges.

1to 10
O until 10

Use “by” to change the stepping in a range.
1to 100 by 2

10 to 1 by -1
'a'to 'z' by 3



The for loop can be used as an expression if
you put yield between the end of the for and the
expression after it.

for(e <- coll) yield expr

What you get back will be a collection that is
generally of the same type as what you iterated
over.



You can put conditions in the for that will cause
some values to be skipped.

for(n <- nums; if(n%2==0)) ...



Multiple Generators

You can also put multiple generators in a for
loop.

for(i <-1to 10; ) <-i1to 10) ...

You can combine as many generators and
guards as you want. You can also declare
variables in the middle of the for.

The thing you assign into is like a val so it can
be a “pattern”. We have only seen this with
tuples so far.



Aliasing and Mutability

| argue that immutable collections like Lists can
be safer than mutable ones like Arrays.

One of the big reasons for this is aliasing.

An alias in programming is just like in normal
life. It is @ second name for something.

Variables are really references to objects.

If a second variable is assigned the same value
as the first, they are aliases to that object.

Let's play with this and draw on the board.



Aliasing for Argument Passing

When you pass arguments, you are really
passing references.

So arguments in functions are aliases to the
objects outside the function

If the object is mutable, the function can change
it.



Pass-by-Name

There is another way to pass things in Scala
called pass-by-name.

When you pass something by name, it isn't
evaluated at the time it is passed. Instead it is
turned into a function and that function is
evaluated every time the variable is used.

The syntax is to put an => before a type, but
not have an argument list before the arrow.



Fill and Tabulate

There are two other ways of creating
collections: fill and tabulate. Both are curried.
Second argument to fill is by name, second
argument to tabulate is a function.

The fill method on Array or List takes a first
argument of how many elements. After that is a
by-name parameter that gives back the type
you want in the array or list.

Tabulate also takes a size first. After that is a
function that takes the index.



Multidimensional Arrays

You can have collections of collections. A
common example would be something like
Array[Array[Double]] to represent a matrix.

Both fill and tabulate can be used to make
these.

val ident=Array.tabulate(3,3)((i,}) => if(i==}) 1.0 else
0.0)



Views

This Is an advanced topic, but can be
significant for performance.

When you map or filter a normal collection, it
runs through the whole thing and makes a new
collection. Doing a lot of these in a row can be
inefficient.

A view is a non-strict form of a collection. Doing
map or filter doesn't produce a new one. It only
does the work when really needed.



Minute Essay

Questions? What are things you would like to
see us do In the second half of the semester.

No IcP because you have a midterm on
Monday.

We'll have a review session on Sunday in this
room at S5pm.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

