
  

The for Loop

10-8-2010



  

Opening Discussion

 Solutions to the interclass problem.
 Minute essay comments:

 Can you forget about recursion and only use loops?



  

The for Loop

 The most commonly used loop in most 
languages is the for loop. The Scala version is 
a bit different from most.

 Often used for counting:
 for(i <- 1 to 10) { ... }

 In general it is a “for each” loop that goes 
through a collection.
 for(e <- coll) { ... }

 Variable takes on value of each element in the 
collection.



  

Range Type

 Range types provide an easy way to make 
collections for counting.

 “to” and “until” operate on numeric types to 
produce ranges.
 1 to 10
 0 until 10

 Use “by” to change the stepping in a range.
 1 to 100 by 2
 10 to 1 by -1
 'a' to 'z' by 3



  

yield

 The for loop can be used as an expression if 
you put yield between the end of the for and the 
expression after it.
 for(e <- coll) yield expr

 What you get back will be a collection that is 
generally of the same type as what you iterated 
over.



  

if Guards

 You can put conditions in the for that will cause 
some values to be skipped.
 for(n <- nums; if(n%2==0)) ...



  

Multiple Generators

 You can also put multiple generators in a for 
loop.
 for(i <- 1 to 10; j <- i to 10) ...

 You can combine as many generators and 
guards as you want. You can also declare 
variables in the middle of the for.

 The thing you assign into is like a val so it can 
be a “pattern”. We have only seen this with 
tuples so far.



  

Aliasing and Mutability

 I argue that immutable collections like Lists can 
be safer than mutable ones like Arrays.

 One of the big reasons for this is aliasing.
 An alias in programming is just like in normal 

life. It is a second name for something.
 Variables are really references to objects.
 If a second variable is assigned the same value 

as the first, they are aliases to that object.
 Let's play with this and draw on the board.



  

Aliasing for Argument Passing

 When you pass arguments, you are really 
passing references.

 So arguments in functions are aliases to the 
objects outside the function

 If the object is mutable, the function can change 
it.



  

Pass-by-Name

 There is another way to pass things in Scala 
called pass-by-name.

 When you pass something by name, it isn't 
evaluated at the time it is passed. Instead it is 
turned into a function and that function is 
evaluated every time the variable is used.

 The syntax is to put an => before a type, but 
not have an argument list before the arrow.



  

Fill and Tabulate

 There are two other ways of creating 
collections: fill and tabulate. Both are curried. 
Second argument to fill is by name, second 
argument to tabulate is a function.

 The fill method on Array or List takes a first 
argument of how many elements. After that is a 
by-name parameter that gives back the type 
you want in the array or list.

 Tabulate also takes a size first. After that is a 
function that takes the index.



  

Multidimensional Arrays

 You can have collections of collections. A 
common example would be something like 
Array[Array[Double]] to represent a matrix.

 Both fill and tabulate can be used to make 
these.
 val ident=Array.tabulate(3,3)((i,j) => if(i==j) 1.0 else 

0.0)



  

Views

 This is an advanced topic, but can be 
significant for performance.

 When you map or filter a normal collection, it 
runs through the whole thing and makes a new 
collection. Doing a lot of these in a row can be 
inefficient.

 A view is a non-strict form of a collection. Doing 
map or filter doesn't produce a new one. It only 
does the work when really needed.



  

Minute Essay

 Questions? What are things you would like to 
see us do in the second half of the semester.

 No IcP because you have a midterm on 
Monday.

 We'll have a review session on Sunday in this 
room at 5pm.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

