

Recursion and More

11-19-2010

Opening Discussion

 IcP solutions.
 Minute essay comments:

 Other ways of detecting the button with a pattern.
 Why would you pick different options?
 Study sheet for final.

XML Patterns

 You can use patterns to pull out parts of XML or
match on different types of nodes.

 Simply put the variable names you want inside
of curly braces.
 val <a>{s} = node

List and Collection Patterns

 You can also make patterns with collections.
 case Array(a,b,c) => // use a, b, and c

 Even more cool is what you can do with Lists.
 case h::t => // h is head and t is tail
 case a::b::Nil => // two element List

 This can be ideal for recursive methods on lists.
 def len(lst:List[Int]) = lst match {

 case Nil => 0
 case h::t => 1+len(t)

 }

Patterns Everywhere

 Patterns are used in a lot of places in Scala, not
just cases and matches.

 The initial declaration of variables is a pattern
match. That is why we could assign from
tuples.

 The “variable name” in a for loop is actually a
pattern. If the pattern isn't matched by an
element, that element is skipped.

Sets, Maps, and Buffers

 The Scala collections library is a lot richer than
just Lists and Arrays.

 I want to introduce three other types of
collections to you as they can make your life a
lot easier for certain tasks.

 They are all parametric so they can work on a
variety of types.

Sets

 This is a collection that isn't ordered and
doesn't allow duplicates.

 There are both mutable and immutable sets. By
default you get the immutable version.

Buffers

 A buffer is a sequence, like an array or a list,
but it is mutable like an array and grows like a
list.

 You find these in the scala.collection.mutable
package.

Maps

 This collection type has two type parameters for
a key and a value type.

 You store values and look them up by key.
 The keys are unique.
 There are both mutable and immutable maps.

By default you get the immutable version.

The Power of Recursion

 Previously we used recursion to create
iteration. This is done with a recursive method
that calls itself once and can often be done
better with loops.

 The real power of recursion comes in when the
method calls itself two or more times.

 The call stack provides memory so recursion
can do one thing, then come back and do
another.

Fibonacci Numbers

 The simplest example of a recursive function
that calls itself more than once is the Fibonacci
numbers.
 1, 1, 2, 3, 5, 8, 13, 21, ...

 Each number is the sum of the two before it.
 f(n)=if(n>2) f(n-1)+f(n-2) else 1

 Simple, but not great.

Towers of Hanoi

 A classic example of recursion is solving the
Towers of Hanoi.

 This game is generally made with disks and
three pegs.

 You need to move the disks from one peg to
another.
 Can only move one disk at a time.
 Can't place a disk on one smaller than it.

 Solution to N disks: move N-1 disks, move 1
disk, move N-1 disks.

Mazes

 My favorite example is mazes.
 Consider a maze as a 2-D grid with each

square either filled or not.
 Now the challenge is to find the length of the

shortest path through the maze.
 How do you do that?

Minute Essay

 What questions do you have about stuff?
 Interclass Problem:

 Convert the weather data CSV to XML (with a
program).

 Or
 Use all three sorts to sort some type of case class

by a field.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

