

Recursion and More

11-19-2010

Opening Discussion

 IcP solutions.
 Minute essay comments:

 Other ways of detecting the button with a pattern.
 Why would you pick different options?
 Study sheet for final.

XML Patterns

 You can use patterns to pull out parts of XML or
match on different types of nodes.

 Simply put the variable names you want inside
of curly braces.
 val <a>{s} = node

List and Collection Patterns

 You can also make patterns with collections.
 case Array(a,b,c) => // use a, b, and c

 Even more cool is what you can do with Lists.
 case h::t => // h is head and t is tail
 case a::b::Nil => // two element List

 This can be ideal for recursive methods on lists.
 def len(lst:List[Int]) = lst match {

 case Nil => 0
 case h::t => 1+len(t)

 }

Patterns Everywhere

 Patterns are used in a lot of places in Scala, not
just cases and matches.

 The initial declaration of variables is a pattern
match. That is why we could assign from
tuples.

 The “variable name” in a for loop is actually a
pattern. If the pattern isn't matched by an
element, that element is skipped.

Sets, Maps, and Buffers

 The Scala collections library is a lot richer than
just Lists and Arrays.

 I want to introduce three other types of
collections to you as they can make your life a
lot easier for certain tasks.

 They are all parametric so they can work on a
variety of types.

Sets

 This is a collection that isn't ordered and
doesn't allow duplicates.

 There are both mutable and immutable sets. By
default you get the immutable version.

Buffers

 A buffer is a sequence, like an array or a list,
but it is mutable like an array and grows like a
list.

 You find these in the scala.collection.mutable
package.

Maps

 This collection type has two type parameters for
a key and a value type.

 You store values and look them up by key.
 The keys are unique.
 There are both mutable and immutable maps.

By default you get the immutable version.

The Power of Recursion

 Previously we used recursion to create
iteration. This is done with a recursive method
that calls itself once and can often be done
better with loops.

 The real power of recursion comes in when the
method calls itself two or more times.

 The call stack provides memory so recursion
can do one thing, then come back and do
another.

Fibonacci Numbers

 The simplest example of a recursive function
that calls itself more than once is the Fibonacci
numbers.
 1, 1, 2, 3, 5, 8, 13, 21, ...

 Each number is the sum of the two before it.
 f(n)=if(n>2) f(n-1)+f(n-2) else 1

 Simple, but not great.

Towers of Hanoi

 A classic example of recursion is solving the
Towers of Hanoi.

 This game is generally made with disks and
three pegs.

 You need to move the disks from one peg to
another.
 Can only move one disk at a time.
 Can't place a disk on one smaller than it.

 Solution to N disks: move N-1 disks, move 1
disk, move N-1 disks.

Mazes

 My favorite example is mazes.
 Consider a maze as a 2-D grid with each

square either filled or not.
 Now the challenge is to find the length of the

shortest path through the maze.
 How do you do that?

Minute Essay

 What questions do you have about stuff?
 Interclass Problem:

 Convert the weather data CSV to XML (with a
program).

 Or
 Use all three sorts to sort some type of case class

by a field.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

