Opening Discussion

- Solutions to the lcP.
- Minute essay comments
 - Translating human thoughts into computer logic.
 - Learning to write recursive functions.
 - How do we make recursive functions call themselves more than once?
- Watching the Hanoi algorithm.
My favorite example of recursion is mazes.
Consider a maze as a 2-D grid with each square either filled or not.
Now the challenge is to find the length of the shortest path through the maze.
How do you do that?
Superior Sorts

- We can also use recursion to write some better sorts.
- All of our old sorts could have been written with recursion, but only as a substitute for iteration.
- With recursion we can do sorts that work by repeatedly breaking the set down then work recursively on the pieces.
- Do they do the work on the way down the stack or back up?
- Work fairly well on lists.
Simple description

- Break the collection in two and make a recursive call on the two halves.
- Merge together the sorted results with an O(n) merge.

Can't be done in place, but that is advantageous for lists which are immutable.

O(n log n) all the time.
Quick Sort

- Description
 - Pick a pivot and move everything less than the pivot below and everything greater above.
 - Recurse on the two sides of the pivot.
- Can be done in place, but Scala collection methods allow very simple form that isn't in place. We'll wrote both.
- Speed depends on pivot selection. $O(n \log n)$ on average with random data, but can be as bad as $O(n^2)$ with bad pivots.
What problems could we have with our maze algorithm?

Not IcP because of assignment.