

Match and Patterns

9-28-2011

Opening Discussion

 Minute essay comments:
 There are for-loop in Scala. We will cover them

before the test.
 Sharing functions across files.
 Sports stats.
 Random numbers. (math.random)
 IcP solutions. Piazza?
 Storing more data to work with.

 ACM tutoring MTWR 3:30-5:00pm in HAS 329.

The match Construct

 Scala has a second conditional called match.
 expr match {

 case pattern1 => expr
 case pattern2 => expr
 ...

 }

 The first case that matches is evaluated.
 Can put if-guards.

Patterns

 Matches a value to a form.
 Form can include tuples and many other things.
 Literals and names starting with capital letters

have to match values.
 Names starting with lower case letters are

bound as new values.

Need for Collections

 Computers are good at dealing a lot of data. So
far we can only store one value in each
variable. This is a significant limitation.

 Collections are types that can store multiple
data values.

 Allow us to remember many things to work on.
 The collection libraries in a language are very

significant.
 Scala has great collections.

Sequences

 One variable/name, many values.
 Integer indexes starting with 0.
 Our first examples are Lists and Arrays.

Basic Arrays and Lists

 The two most basic collection types in Scala
are arrays and lists.

 We can make either by following the type name
with a parenthesized list of elements.

 Can create an “empty” array using new.
 Can build Lists with :: operator. Nil is empty.
 Comparison

 Arrays are mutable, but fixed in size.
 Lists are immutable, but it is easy to add an

element and get a new list.

Parametric Types

 You should notice that when we make an array
or a list, the type is followed by square
brackets.

 These types are parametric. So they take type
arguments.

 In Scala, type parameters are placed in square
brackets.

Using Arrays

 We can get to the elements in an array by
putting an index in parentheses. The index is 0-
referenced.
 arr(5)

 This syntax can be used in expressions to read
values.

 It can also be used in assignments to store
values in the array. This is what it means to be
mutable.

 Let's look at some examples of this.

Using Lists

 You can do direct access on lists, but it is
inefficient.

 The better method is to use the head and tail
methods.

 The elements in a list can't be changed.
However, you can efficiently add new elements
at the front of the list.

 Lists work very well with recursion.

List and Array Patterns

 You can make patterns with Lists and Arrays.
 For Arrays:

 Array(1,2,a,b,c)

 For Lists:
 List(1,2,a,b,c)
 h::t - matches any non-empty list
 Nil - matches an empty list

Minute Essay

 Questions?
 The first assignment is due Friday by midnight,

but you might want to aim for earlier as you
might find it hard to submit outside this building.

 I will show you how to submit on Friday in
class.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

