Match and Patterns

9-30-2011



Opening Discussion

Minute essay comments:

Scala syntax compared to other languages.
Why fill passed (a, i+1, x)?

If you don't know how many values you will have,
arrays are not ideal.

When to use Lists vs. Arrays.
Setting using multiple values.

All quizzes and tests are on paper. Coding is for
IcPs and sssignments.

Uses for match.



Getting lots of data into vi.
Submitting assignments.



Recap Arrays and Lists

Creation
Array(5,7,4)
List(8,5,3)
new Array[Double](1000)
1::2::3::Nil
Comparison
Arrays: mutable, fixed size.
Lists: immutable, :: to make new, longer list

Indexing: start at 0
arr(d), arr(5)="hi’



Using Lists

You can do direct access on lists, but it is
inefficient.

The better method Is to use the head and tall
methods.

The elements in a list can't be changed.
However, you can efficiently add new elements
at the front to make a new list.

Lists work very well with recursion.



List and Array Patterns

You can make patterns with Lists and Arrays.

For Arrays:
Array(1,2,a,b,c)
For Lists:
List(1,2,a,b,c)
h::t - matches any non-empty list
Nil - matches an empty list



Standard Methods

There are lots of methods on collections. The
APl can help us see all of them.

Part of collections:

drop, init, last, slice, splitAt, take, takeRight
Boolean tests:

contains, endsWith, isEmpty, nonEmpty, starts\With
Searching:

indexOf, lastindexOf
Other:

mkString, reverse, zip, zipWithIndex



Other Methods

If the elements in a list support addition or
multiplication, you can use the sum and product

methods.
f they are ordered you can do min and max.

Having sum and length makes averages really
easy.

With min you can even drop a grade easily.




Higher Order Methods

The most powerful methods are ones you can
pass functions into.

exists, forall — Boolean checks like for math.

filter, partition — separate collection based on
Boolean.

map — apply function to all the elements.

reduceleft — apply function moving through
collection

foldLeft — apply function moving through, but allows
initial value so it can return a different type. This is
curried.



Let's Put These Into Action

| want to spend the rest of the class time
playing with these methods and seeing what we
can do with them.

A String is a collection so you can do these
things with a String as well.

String also has a method called spilit.



Minute Essay

What questions do you have?
Quiz #3 on Monday.



Basic Arrays and Lists

The two most basic collection types in Scala
are arrays and lists.

We can make either by following the type name
with a parenthesized list of elements.

Can create an “empty” array using new.
Can build Lists with :: operator. Nil is empty.
Comparison

Arrays are mutable, but fixed in size.

Lists are immutable, but it is easy to add an
element and get a new list.



Parametric Types

You should notice that when we make an array
or a list, the type is followed by square
brackets.

These types are parametric. So they take type
arguments.

In Scala, type parameters are placed in square
brackets.



Using Arrays

We can get to the elements in an array by

putting an index in parentheses. The index is O-
referenced.

arr(9)

his syntax can be used in expressions to read
values.

It can also be used in assignments to store

values in the array. This is what it means to be
mutable.

Let's look at some examples of this.



Using Lists

You can do direct access on lists, but it is
inefficient.

The better method Is to use the head and tall
methods.

The elements in a list can't be changed.

However, you can efficiently add new elements
at the front of the list.

Lists work very well with recursion.



List and Array Patterns

You can make patterns with Lists and Arrays.

For Arrays:
Array(1,2,a,b,c)
For Lists:
List(1,2,a,b,c)
h::t - matches any non-empty list
Nil - matches an empty list



Minute Essay

Questions?

The first assignment is due Friday by midnight,
but you might want to aim for earlier as you
might find it hard to submit outside this building.

| will show you how to submit on Friday in
class.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

