Sorting

11-2-2011
Opening Discussion

- Minute essay comments:
 - Will your final project game look like what we did in class last time?
 - Getting diagonal movement with keys.
 - User input to draw stuff. (No API call.)
 - How much do these graphics calls translate to the real world?
 - You can listen to mouse.wheel for scrolling.
 - Resubmit assignments whenever. Just e-mail me.
 - Why can't Putty pop up GUI windows?

- IcP Solutions
Last time we mentioned AffineTransforms, but didn't see what they can do.

Let's take some time now to write code that uses an AffineTransform in our drawing.
Motivation

- There are many reasons that you might want the data you are working with to be in a particular order.
- If nothing else, humans often like seeing things in certain orders.
- It turns out that ordered data can be beneficial for the computer as well.
- Putting things in order by some value is called sorting.
Methods of Sorting

- If I ask you to sort a bunch of items, how would you go about doing it? Describe your approach.
- How does it vary for different types or configurations of objects?
O(n²) Sorts

- We are going to look at three different sorting techniques today.
- These sorts all do work that is proportional to the square of the number of elements.
- That isn't good for large collections, but the sorts are fairly simple to write.
- These work “in place” so we use arrays.
- Each involves an inner loop that reorders things and an outer loop that makes the inner one happen over and over.
Bubble Sort

- **Inner loop:**
 - Compare adjacent elements and swap them if they are out of order.

- **Outer loop:**
 - Repeat n-1 times or until no swaps are done.
 - The latter option is called a flagged bubble sort.
Selection Sort

- This is often called a min-sort or a max-sort depending on how you write it. I'll describe a min-sort here.

 - Inner loop:
 - Find the smallest element and SWAP it into position if not already there.

 - Outer loop:
 - Repeat n-1 times so all elements are in the right place.

- Does only $O(n)$ swaps, but still $O(n^2)$ comparisons.
Insertion Sort

- **Inner loop:**
 - Take the next element and shift it down to the right spot.

- **Outer loop:**
 - Run through all the elements starting with the second.

- This sort is actually a bit faster (factor of 2) on random data. It is really efficient on nearly sorted data.
Watching Them Work

- One advantage of doing graphics before sorting is that we can write code to visualize what is happening when we sort numbers with these sorts.

- Let's write this code and watch our sorts work.
Show me what would happen after each iteration of the inner loop if we min-sort these values.

- 4, 7, 1, 3, 8, 2

Registration info:

- CS Major/Minor:
 - CSCI 1321, 1323, 1120
 - Watch for e-mail about CSCI 3194

- Others:
 - CSCI 1321, PHED 1137