

Patterns, Set, and Maps

4-15-2011

Opening Discussion

 Minute essay comments:
 Material on final exam.

 Simple description of a pattern. Something you
probably did in math in elementary school was
looking at repeating patterns.

 A pattern specifies a certain form for
something. A match occurs if a value fits the
given pattern.

Pattern Matching

 We have used three types of patterns
previously:
 Value literals
 Tuples
 Type matches

 The last two start to show the power of pattern
matching. In particular, they show that part of a
pattern can be a variable name that binds to
part of the pattern.

Variable Binding

 When a pattern is matched, any words that
start lower case are assumed to be variable
names you want bound.

 Use an underscore for anything you want to
match stuff, but ignore the value.

 Use @ to bind a name to a match you are also
further specifying.

 To match the value of an outside variable put
the variable name in backticks.

XML Patterns

 You can use patterns to pull out parts of XML or
match on different types of nodes.

 Simply put the variable names you want inside
of curly braces.
 val <a>{s} = node

Case Class Patterns

 The real power of case classes in Scala comes
from the fact they can be used in matches.
 stu match {
 case Student(n,q,t,a) => ...
 }

 You can do this type of matching on events to
pull out the fields you care about if you don't
want the full event.
 case MouseMoved(source,point,mod) => ...

List and Collection Patterns

 You can also make patterns with collections.
 case Array(a,b,c) => // use a, b, and c

 Even more cool is what you can do with Lists.
 case h::t => // h is head and t is tail
 case a::b::Nil => // two element List

 This can be ideal for recursive methods on lists.
 def len(lst:List[Int]) = lst match {

 case Nil => 0
 case h::t => 1+len(t)

 }

Patterns Everywhere

 Patterns are used in a lot of places in Scala, not
just cases and matches.

 The initial declaration of variables is a pattern
match. That is why we could assign from
tuples.

 The “variable name” in a for loop is actually a
pattern. If the pattern isn't matched by an
element, that element is skipped.

Sets, Maps, and Buffers

 The Scala collections library is a lot richer than
just Lists and Arrays.

 I want to introduce three other types of
collections to you as they can make your life a
lot easier for certain tasks.

 They are all parametric so they can work on a
variety of types.

Sets

 This is a collection that isn't ordered and
doesn't allow duplicates.

 There are both mutable and immutable sets. By
default you get the mutable version.

Buffers

 A buffer is a sequence, like an array or a list,
but it is mutable like an array and grows like a
list.

 You find these in the scala.collection.mutable
package.

Maps

 This collection type has two type parameters for
a key and a value type.

 You store values and look them up by key.
 The keys are unique.
 There are both mutable and immutable maps.

By default you get the mutable version.

Minute Essay

 What questions do you have about stuff?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

