

Patterns, Set, and Maps

4-15-2011

Opening Discussion

 Minute essay comments:
 Material on final exam.

 Simple description of a pattern. Something you
probably did in math in elementary school was
looking at repeating patterns.

 A pattern specifies a certain form for
something. A match occurs if a value fits the
given pattern.

Pattern Matching

 We have used three types of patterns
previously:
 Value literals
 Tuples
 Type matches

 The last two start to show the power of pattern
matching. In particular, they show that part of a
pattern can be a variable name that binds to
part of the pattern.

Variable Binding

 When a pattern is matched, any words that
start lower case are assumed to be variable
names you want bound.

 Use an underscore for anything you want to
match stuff, but ignore the value.

 Use @ to bind a name to a match you are also
further specifying.

 To match the value of an outside variable put
the variable name in backticks.

XML Patterns

 You can use patterns to pull out parts of XML or
match on different types of nodes.

 Simply put the variable names you want inside
of curly braces.
 val <a>{s} = node

Case Class Patterns

 The real power of case classes in Scala comes
from the fact they can be used in matches.
 stu match {
 case Student(n,q,t,a) => ...
 }

 You can do this type of matching on events to
pull out the fields you care about if you don't
want the full event.
 case MouseMoved(source,point,mod) => ...

List and Collection Patterns

 You can also make patterns with collections.
 case Array(a,b,c) => // use a, b, and c

 Even more cool is what you can do with Lists.
 case h::t => // h is head and t is tail
 case a::b::Nil => // two element List

 This can be ideal for recursive methods on lists.
 def len(lst:List[Int]) = lst match {

 case Nil => 0
 case h::t => 1+len(t)

 }

Patterns Everywhere

 Patterns are used in a lot of places in Scala, not
just cases and matches.

 The initial declaration of variables is a pattern
match. That is why we could assign from
tuples.

 The “variable name” in a for loop is actually a
pattern. If the pattern isn't matched by an
element, that element is skipped.

Sets, Maps, and Buffers

 The Scala collections library is a lot richer than
just Lists and Arrays.

 I want to introduce three other types of
collections to you as they can make your life a
lot easier for certain tasks.

 They are all parametric so they can work on a
variety of types.

Sets

 This is a collection that isn't ordered and
doesn't allow duplicates.

 There are both mutable and immutable sets. By
default you get the mutable version.

Buffers

 A buffer is a sequence, like an array or a list,
but it is mutable like an array and grows like a
list.

 You find these in the scala.collection.mutable
package.

Maps

 This collection type has two type parameters for
a key and a value type.

 You store values and look them up by key.
 The keys are unique.
 There are both mutable and immutable maps.

By default you get the mutable version.

Minute Essay

 What questions do you have about stuff?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

