

Basics of Object-Orientation

4-27-2011

Opening Discussion

 Do you have any questions about the quiz?
 Minute essay comments

 Two paths of the same length.
 No path to exit.
 Not retracing steps.
 Nothing can go wrong with me writing the code.

(Wishful thinking on the part of one student.)

Mazes

 Finishing shortest path.
 Adding breadcrumbs.
 Slow in the worst case because this does all

possible paths.

Superior Sorts

 We can also use recursion to write some better
sorts.

 All of our old sorts could have been written with
recursion, but only as a substitute for iteration.

 With recursion we can do sorts that work by
repeatedly breaking the set down then work
recursively on the pieces.

 Do they do the work on the way down the stack
or back up?

 Work fairly well on lists.

Merge Sort

 Simple description
 Break the collection in two and make a recursive

call on the two halves.
 Merge together the sorted results with an O(n)

merge.

 Can't be done in place, but that is
advantageous for lists which are immutable.

 O(n log n) all the time.

Quick Sort

 Description
 Pick a pivot and move everything less than the pivot

below and everything greater above.
 Recurse on the two sides of the pivot.

 Can be done in place, but Scala collection
methods allow very simple form that isn't in
place. We'll wrote both.

 Speed depends on pivot selection. O(n log n)
on average with random data, but can be as
bad as O(n2) with bad pivots.

Object-Orientation

 We have been dealing with objects all
semester, but we haven't really faced object-
orientation head on.

 The OO paradigm is characterized by
encapsulation, the grouping of data and
functions together into objects.

 The data is called members and the functions
are called methods.

 The idea is that an object knows some things
and how to do some things.

Classes

 Scala is a class-based OO language. In the
code we write classes which act as the
blueprints of objects.

 These start just like the case classes we saw
before, but the word case isn't required.

 Put the body of the class in curly braces after
the declaration and arguments.

Differences from Case Classes

 Members a private by default so you can only
see them in the class.

 Have to be made with new.
 Code in the body of the class is executed

immediately.
 Functions defined in the body are methods of

the objects.
 Data defined in the class are members of the

objects.
 You can make things private.

Making Objects

 The class is only a blueprint. To get an object
we have to instantiate an instance form the
class.
 new ClassName(arguments)
 This expression can be assigned to values or

passed into functions. The type is the name of the
class.

 Once you have an object you can access
members and methods using the dot notation.

Operators as Methods

 You can use symbols for method names and
use them with operator syntax.

 This lets you do things like a+b when a and b
are of a type you created.

Minute Essay

 Do you have any final requests before the last
day of class?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

