

Match and Patterns

2-15-2012

Opening Discussion

 Minute essay comments:
 Can't do “real” problems.
 Books I read and music.
 Functions for imaginary numbers.
 We will learn graphics.
 Wiggle room on input.
 Loops would be nice.
 Using other concepts (like loops) on IcPs.
 Turning a String to an Int.
 Distinction between println and return.

More

 Entering multiple types of data on the same line.
 More time coding than it would take to do by hand.
 Pulling apart tuples.
 Getting vi coloring in other places.

 Submitting the assignment?

Tracing Recursion

 The act of running through code line by line to
see what it does is called tracing. It is a very
important skill for programmers.

 Tracing often involves writing out variables and
tracing how they change or drawing “pictures”.

 I want to show you an approach to tracing
recursive functions.

Deep Recursion

 The problem in dealing with 10,000 numbers.
 Rewrite the code so it doesn't have to

remember things.

The match Construct

 Scala has a second conditional called match.
 expr match {

 case pattern1 => expr
 case pattern2 => expr
 ...

 }

 The first case that matches is evaluated.
 Can put if-guards.

Patterns

 Matches a value to a form.
 Form can include tuples and many other things.
 Literals and names starting with capital letters

have to match values.
 Names starting with lower case letters are

bound as new values.

Need for Collections

 Computers are good at dealing a lot of data. So
far we can only store one value in each
variable. This is a significant limitation.

 Collections are types that can store multiple
data values.

 Allow us to remember many things to work on.
 The collection libraries in a language are very

significant.
 Scala has great collections.

Sequences

 One variable/name, many values.
 Integer indexes starting with 0.
 Our first examples are Lists and Arrays.

Basic Arrays and Lists

 The two most basic collection types in Scala
are arrays and lists.

 We can make either by following the type name
with a parenthesized list of elements.

 Can create an “empty” array using new.
 Can build Lists with :: operator. Nil is empty.
 Comparison

 Arrays are mutable, but fixed in size.
 Lists are immutable, but it is easy to add an

element and get a new list.

Parametric Types

 You should notice that when we make an array
or a list, the type is followed by square
brackets.

 These types are parametric. So they take type
arguments.

 In Scala, type parameters are placed in square
brackets.

Using Arrays

 We can get to the elements in an array by
putting an index in parentheses. The index is 0-
referenced.
 arr(5)

 This syntax can be used in expressions to read
values.

 It can also be used in assignments to store
values in the array. This is what it means to be
mutable.

 Let's look at some examples of this.

Using Lists

 You can do direct access on lists, but it is
inefficient.

 The better method is to use the head and tail
methods.

 The elements in a list can't be changed.
However, you can efficiently add new elements
at the front of the list.

 Lists work very well with recursion.

List and Array Patterns

 You can make patterns with Lists and Arrays.
 For Arrays:

 Array(1,2,a,b,c)

 For Lists:
 List(1,2,a,b,c)
 h::t - matches any non-empty list
 Nil - matches an empty list

Minute Essay

 Questions?
 Quiz #3 is on Friday.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

