Match and Patterns

2-15-2012



Opening Discussion

Minute essay comments:

Can't do “real” problems.

Books | read and music.

Functions for imaginary numbers.

We will learn graphics.

Wiggle room on input.

Loops would be nice.

Using other concepts (like loops) on IcPs.
Turning a String to an Int.

Distinction between println and return.



Entering multiple types of data on the same line.
More time coding than it would take to do by hand.
Pulling apart tuples.

Getting vi coloring in other places.

Submitting the assignment?



Tracing Recursion

The act of running through code line by line to
see what it does is called tracing. It is a very
important skill for programmers.

Tracing often involves writing out variables and
tracing how they change or drawing “pictures”.

| want to show you an approach to tracing
recursive functions.



Deep Recursion

The problem in dealing with 10,000 numbers.

Rewrite the code so it doesn't have to
remember things.



The match Construct

Scala has a second conditional called match.

expr match {

case pattern1 => expr
case pattern2 => expr

J

The first case that matches is evaluated.
Can put if-guards.



Matches a value to a form.
Form can include tuples and many other things.

Literals and names starting with capital letters
have to match values.

Names starting with lower case letters are
bound as new values.



Need for Collections

Computers are good at dealing a lot of data. So
far we can only store one value in each
variable. This is a significant limitation.

Collections are types that can store multiple
data values.

Allow us to remember many things to work on.

The collection libraries in a language are very
significant.

Scala has great collections.



Sequences

One variable/name, many values.
Integer indexes starting with 0.
Our first examples are Lists and Arrays.



Basic Arrays and Lists

The two most basic collection types in Scala
are arrays and lists.

We can make either by following the type name
with a parenthesized list of elements.

Can create an “empty” array using new.
Can build Lists with :: operator. Nil is empty.
Comparison

Arrays are mutable, but fixed in size.

Lists are immutable, but it is easy to add an
element and get a new list.



Parametric Types

You should notice that when we make an array
or a list, the type is followed by square
brackets.

These types are parametric. So they take type
arguments.

In Scala, type parameters are placed in square
brackets.



Using Arrays

We can get to the elements in an array by

putting an index in parentheses. The index is O-
referenced.

arr(9)

his syntax can be used in expressions to read
values.

It can also be used in assignments to store

values in the array. This is what it means to be
mutable.

Let's look at some examples of this.



Using Lists

You can do direct access on lists, but it is
inefficient.

The better method Is to use the head and tall
methods.

The elements in a list can't be changed.

However, you can efficiently add new elements
at the front of the list.

Lists work very well with recursion.



List and Array Patterns

You can make patterns with Lists and Arrays.

For Arrays:
Array(1,2,a,b,c)
For Lists:
List(1,2,a,b,c)
h::t - matches any non-empty list
Nil - matches an empty list



Minute Essay

Questions?
Quiz #3 is on Friday.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

