

Lists and Arrays and Methods

2-17-2012

Opening Discussion

 Do you have any questions about the quiz?
 Minute essay comments:

 Other collection types.
 Gandalf vs. Dumbledore
 Approaching problems.
 Difference between recursion and loops.
 Cutting a Double to a number of digits.
 Do you need to improve your recursive methods?
 Not knowing what to ask.
 Infinite arrays or undefined length?

More

 TA? Kristen Lund
 Anti-virus recommendation.
 Array size limit?
 Filling an array with user input.
 Grading assignments.
 Heterogeneous arrays and lists.
 Default case for match.
 Cyber-attack of automated cars.
 Lab hours on weekends.

Recap Arrays and Lists

 Creation
 Array(5,7,4)
 List(8,5,3)
 new Array[Double](1000)
 1::2::3::Nil

 Comparison
 Arrays: mutable, fixed size.
 Lists: immutable, :: to make new, longer list

 Indexing: start at 0
 arr(5), arr(5)=”hi”

Using Lists

 You can do direct access on lists, but it is
inefficient.

 The better method is to use the head and tail
methods.

 The elements in a list can't be changed.
However, you can efficiently add new elements
at the front to make a new list.

 Lists work very well with recursion.

List and Array Patterns

 You can make patterns with Lists and Arrays.
 For Arrays:

 Array(1,2,a,b,c)

 For Lists:
 List(1,2,a,b,c)
 h::t - matches any non-empty list
 Nil - matches an empty list

Standard Methods

 There are lots of methods on collections. The
API can help us see all of them.

 Part of collections:
 drop, init, last, slice, splitAt, take, takeRight

 Boolean tests:
 contains, endsWith, isEmpty, nonEmpty, startsWith

 Searching:
 indexOf, lastIndexOf

 Other:
 mkString, reverse, zip, zipWithIndex

Other Methods

 If the elements in a list support addition or
multiplication, you can use the sum and product
methods.

 If they are ordered you can do min and max.
 Having sum and length makes averages really

easy.
 With min you can even drop a grade easily.

Higher Order Methods

 The most powerful methods are ones you can
pass functions into.
 exists, forall – Boolean checks like for math.
 filter, partition – separate collection based on

Boolean.
 map – apply function to all the elements.
 reduceLeft – apply function moving through

collection
 foldLeft – apply function moving through, but allows

initial value so it can return a different type. This is
curried.

Let's Put These Into Action

 I want to spend the rest of the class time
playing with these methods and seeing what we
can do with them.

 A String is a collection so you can do these
things with a String as well.

 String also has a method called split.

Minute Essay

 What questions do you have? What collection
method made the least sense?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

