

Argument Passing and While
Loops

2-22-2012

Opening Discussion

 Minute essay comments:
 First element that satisfies condition.
 Other Scala books.
 Midterm issues.
 Code on tests.
 Why can you beat the top level in Super Smash

Bros?
 What is the best way to memorize a PL?
 Why did I cut my hair?
 Do I watch “Game of Thrones”?

More

 Putting things together moving from REPL to script.
 Lots of ways to write things.
 DNA sequencing and Dr. Hibbs.
 Looking at a “real” program.
 Knowing the difference between foldLeft and

reduceLeft in “real life”.
 Why use zip?

 IcP Solutions

Let's Put These Into Action

 I want to spend some class time playing with
these methods and seeing what we can do with
them.

 A String is a collection so you can do these
things with a String as well.

 String also has a method called split.
 BLS data

 ftp://ftp.bls.gov/pub/time.series/la/

ftp://ftp.bls.gov/pub/time.series/la/

Variable Length Argument Lists

 You can make functions that don't specify
exactly how many arguments they take.

 These are often called var-args.
 To do this, but a * after the type. It can only be

the last argument in a list.

Calling Var-Args with Collections

 It is often helpful to call a var-args method
passing a collection for the variable length
arguments.

 You can do this, but you have to tell Scala what
you are doing.

 Follow the collection with :_* to do this.
 The : is like specifying a type.
 The _ says you don't care about the exact type.
 The * is like the * in var-args declarations.

Aliasing and Mutability

 I argue that immutable collections like Lists can
be safer than mutable ones like Arrays.

 One of the big reasons for this is aliasing.
 An alias in programming is just like in normal

life. It is a second name for something.
 Variables are really references to objects.
 If a second variable is assigned the same value

as the first, they are aliases to that object.
 Let's play with this and draw on the board.

Aliasing for Argument Passing

 When you pass arguments, you are really
passing references.

 So arguments in functions are aliases to the
objects outside the function

 If the object is mutable, the function can change
it.

Pass-by-Name

 There is another way to pass things in Scala
called pass-by-name.

 When you pass something by name, it isn't
evaluated at the time it is passed. Instead it is
turned into a function and that function is
evaluated every time the variable is used.

 The syntax is to put an => before a type, but
not have an argument list before the arrow.

Fill and Tabulate

 There are two other ways of creating
collections: fill and tabulate. Both are curried.
Second argument to fill is by name, second
argument to tabulate is a function.

 The fill method on Array or List takes a first
argument of how many elements. After that is a
by-name parameter that gives back the type
you want in the array or list.

 Tabulate also takes a size first. After that is a
function that takes the index.

while Loop

 Recursion is sufficient for making repetition, but
in imperative languages it isn't the normal
approach. Instead, people use loops.

 The simplest loop is the while loop.
 while(condition) statement

 The condition is evaluated first. If it is true the
statement (possibly a block) executes.

 This repeats until the condition is false.

do-while Loop

 The partner to the while loop is the do-while
loop.
 do {

 statement

 } while(condition)
 This loop is post-check instead of the pre-check

of the normal while loop.
 Always happens once.
 The while loop might never happen.

Minute Essay

 What questions do you have?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

