Argument Passing and While

Loops

2-22-2012



Opening Discussion

Minute essay comments:

First element that satisfies condition.
Other Scala books.
Midterm issues.

Code on tests.

Why can you beat the top level in Super Smash
Bros?

What is the best way to memorize a PL?
Why did | cut my hair?
Do | watch “Game of Thrones™?



Putting things together moving from REPL to script.
_ots of ways to write things.

DNA sequencing and Dr. Hibbs.

_ooking at a “real” program.

Knowing the difference between foldLeft and
reduceleft in “real life”.

Why use zip?
IcP Solutions



Let's Put These Into Action

| want to spend some class time playing with

these methods and seeing what we can do with
them.

A String is a collection so you can do these
things with a String as well.

String also has a method called split.

BLS data
ftp://ftp.bls.gov/pub/time.series/la/


ftp://ftp.bls.gov/pub/time.series/la/

Variable Length Argument Lists

You can make functions that don't specify
exactly how many arguments they take.

'hese are often called var-args.

"0 do this, but a * after the type. It can only be
the last argument in a list.




Calling Var-Args with Collections

It is often helpful to call a var-args method
passing a collection for the variable length
arguments.

You can do this, but you have to tell Scala what
you are doing.

Follow the collection with :_* to do this.

The : is like specifying a type.
ne _ says you don't care about the exact type.

he * is like the * in var-args declarations.




Aliasing and Mutability

| argue that immutable collections like Lists can
be safer than mutable ones like Arrays.

One of the big reasons for this is aliasing.

An alias in programming is just like in normal
life. It is @ second name for something.

Variables are really references to objects.

If a second variable is assigned the same value
as the first, they are aliases to that object.

Let's play with this and draw on the board.



Aliasing for Argument Passing

When you pass arguments, you are really
passing references.

So arguments in functions are aliases to the
objects outside the function

If the object is mutable, the function can change
it.



Pass-by-Name

There is another way to pass things in Scala
called pass-by-name.

When you pass something by name, it isn't
evaluated at the time it is passed. Instead it is
turned into a function and that function is
evaluated every time the variable Is used.

The syntax is to put an => before a type, but
not have an argument list before the arrow.



Fill and Tabulate

There are two other ways of creating
collections: fill and tabulate. Both are curried.
Second argument to fill is by name, second
argument to tabulate is a function.

The fill method on Array or List takes a first
argument of how many elements. After that is a
by-name parameter that gives back the type
you want in the array or list.

Tabulate also takes a size first. After that is a
function that takes the index.



while Loop

Recursion is sufficient for making repetition, but
In Imperative languages it isn't the normal
approach. Instead, people use loops.

The simplest loop is the while loop.
while(condition) statement

The condition is evaluated first. If it is true the
statement (possibly a block) executes.

This repeats until the condition is false.



do-while Loop

The partner to the while loop is the do-while
loop.

do {
statement
} while(condition)

This loop is post-check instead of the pre-check
of the normal while loop.

Always happens once.

The while loop might never happen.



Minute Essay

What questions do you have?



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

