

Loops

2-24-2012

Opening Discussion

 Minute essay comments:
 What books would I read if I had time?
 Impact of the power outage on our schedule. (IcPs)
 Cheat sheet can have front and back.
 Special characters in encryption/decryption.
 Looking at code: Google Code and Github.
 All scripts ARE online.
 Significant functions: map and filter.
 How to practice and study.
 List of List?

More

 Reading BigInts.
 Sorting – that is later in the semester.
 Coding augmented reality and CV.
 Uses of HUD.
 “Books website”
 Breaking out in dance.
 5 IcPs
 Is stumbling along “normal”?
 Games in majors lab.
 The unzip method.

Variable Length Argument Lists

 You can make functions that don't specify
exactly how many arguments they take.

 These are often called var-args.
 To do this, but a * after the type. It can only be

the last argument in a list.

Calling Var-Args with Collections

 It is often helpful to call a var-args method
passing a collection for the variable length
arguments.

 You can do this, but you have to tell Scala what
you are doing.

 Follow the collection with :_* to do this.
 The : is like specifying a type.
 The _ says you don't care about the exact type.
 The * is like the * in var-args declarations.

Aliasing and Mutability

 I argue that immutable collections like Lists can
be safer than mutable ones like Arrays.

 One of the big reasons for this is aliasing.
 An alias in programming is just like in normal

life. It is a second name for something.
 Variables are really references to objects.
 If a second variable is assigned the same value

as the first, they are aliases to that object.
 Let's play with this and draw on the board.

Aliasing for Argument Passing

 When you pass arguments, you are really
passing references.

 So arguments in functions are aliases to the
objects outside the function

 If the object is mutable, the function can change
it.

Pass-by-Name

 There is another way to pass things in Scala
called pass-by-name.

 When you pass something by name, it isn't
evaluated at the time it is passed. Instead it is
turned into a function and that function is
evaluated every time the variable is used.

 The syntax is to put an => before a type, but
not have an argument list before the arrow.

Fill and Tabulate

 There are two other ways of creating
collections: fill and tabulate. Both are curried.
Second argument to fill is by name, second
argument to tabulate is a function.

 The fill method on Array or List takes a first
argument of how many elements. After that is a
by-name parameter that gives back the type
you want in the array or list.

 Tabulate also takes a size first. After that is a
function that takes the index.

while Loop

 Recursion is sufficient for making repetition, but
in imperative languages it isn't the normal
approach. Instead, people use loops.

 The simplest loop is the while loop.
 while(condition) statement

 The condition is evaluated first. If it is true the
statement (possibly a block) executes.

 This repeats until the condition is false.

do-while Loop

 The partner to the while loop is the do-while
loop.
 do {

 statement
 } while(condition)

 This loop is post-check instead of the pre-check
of the normal while loop.

 Always happens once.
 The while loop might never happen.

The for Loop

 The most commonly used loop in most
languages is the for loop. The Scala version is
a bit different from most.

 Often used for counting:
 for(i <- 1 to 10) { ... }

 In general it is a “for each” loop that goes
through a collection.
 for(e <- coll) { ... }

 Variable takes on value of each element in the
collection.

Range Type

 Range types provide an easy way to make
collections for counting.

 “to” and “until” operate on numeric types to
produce ranges.
 1 to 10
 0 until 10

 Use “by” to change the stepping in a range.
 1 to 100 by 2
 10 to 1 by -1
 'a' to 'z' by 3

yield

 The for loop can be used as an expression if
you put yield between the end of the for and the
expression after it.
 for(e <- coll) yield expr

 What you get back will be a collection that is
generally of the same type as what you iterated
over.

if Guards

 You can put conditions in the for that will cause
some values to be skipped.
 for(n <- nums; if(n%2==0)) ...

Multiple Generators

 You can also put multiple generators in a for
loop.
 for(i <- 1 to 10; j <- i to 10) ...

 You can combine as many generators and
guards as you want. You can also declare
variables in the middle of the for.

 The thing you assign into is like a val so it can
be a “pattern”. We have only seen this with
tuples so far.

Multidimensional Arrays

 You can have collections of collections. A
common example would be something like
Array[Array[Double]] to represent a matrix.

 Both fill and tabulate can be used to make
these.
 val ident=Array.tabulate(3,3)((i,j) => if(i==j)

1.0 else 0.0)

Minute Essay

 Any questions?
 Midterm is on Monday. What times over the

weekend work well for you to have a review
session? I will also do a Google+ hangout
review session during the weekend.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

