

Loops

2-24-2012

Opening Discussion

 Minute essay comments:
 What books would I read if I had time?
 Impact of the power outage on our schedule. (IcPs)
 Cheat sheet can have front and back.
 Special characters in encryption/decryption.
 Looking at code: Google Code and Github.
 All scripts ARE online.
 Significant functions: map and filter.
 How to practice and study.
 List of List?

More

 Reading BigInts.
 Sorting – that is later in the semester.
 Coding augmented reality and CV.
 Uses of HUD.
 “Books website”
 Breaking out in dance.
 5 IcPs
 Is stumbling along “normal”?
 Games in majors lab.
 The unzip method.

Variable Length Argument Lists

 You can make functions that don't specify
exactly how many arguments they take.

 These are often called var-args.
 To do this, but a * after the type. It can only be

the last argument in a list.

Calling Var-Args with Collections

 It is often helpful to call a var-args method
passing a collection for the variable length
arguments.

 You can do this, but you have to tell Scala what
you are doing.

 Follow the collection with :_* to do this.
 The : is like specifying a type.
 The _ says you don't care about the exact type.
 The * is like the * in var-args declarations.

Aliasing and Mutability

 I argue that immutable collections like Lists can
be safer than mutable ones like Arrays.

 One of the big reasons for this is aliasing.
 An alias in programming is just like in normal

life. It is a second name for something.
 Variables are really references to objects.
 If a second variable is assigned the same value

as the first, they are aliases to that object.
 Let's play with this and draw on the board.

Aliasing for Argument Passing

 When you pass arguments, you are really
passing references.

 So arguments in functions are aliases to the
objects outside the function

 If the object is mutable, the function can change
it.

Pass-by-Name

 There is another way to pass things in Scala
called pass-by-name.

 When you pass something by name, it isn't
evaluated at the time it is passed. Instead it is
turned into a function and that function is
evaluated every time the variable is used.

 The syntax is to put an => before a type, but
not have an argument list before the arrow.

Fill and Tabulate

 There are two other ways of creating
collections: fill and tabulate. Both are curried.
Second argument to fill is by name, second
argument to tabulate is a function.

 The fill method on Array or List takes a first
argument of how many elements. After that is a
by-name parameter that gives back the type
you want in the array or list.

 Tabulate also takes a size first. After that is a
function that takes the index.

while Loop

 Recursion is sufficient for making repetition, but
in imperative languages it isn't the normal
approach. Instead, people use loops.

 The simplest loop is the while loop.
 while(condition) statement

 The condition is evaluated first. If it is true the
statement (possibly a block) executes.

 This repeats until the condition is false.

do-while Loop

 The partner to the while loop is the do-while
loop.
 do {

 statement
 } while(condition)

 This loop is post-check instead of the pre-check
of the normal while loop.

 Always happens once.
 The while loop might never happen.

The for Loop

 The most commonly used loop in most
languages is the for loop. The Scala version is
a bit different from most.

 Often used for counting:
 for(i <- 1 to 10) { ... }

 In general it is a “for each” loop that goes
through a collection.
 for(e <- coll) { ... }

 Variable takes on value of each element in the
collection.

Range Type

 Range types provide an easy way to make
collections for counting.

 “to” and “until” operate on numeric types to
produce ranges.
 1 to 10
 0 until 10

 Use “by” to change the stepping in a range.
 1 to 100 by 2
 10 to 1 by -1
 'a' to 'z' by 3

yield

 The for loop can be used as an expression if
you put yield between the end of the for and the
expression after it.
 for(e <- coll) yield expr

 What you get back will be a collection that is
generally of the same type as what you iterated
over.

if Guards

 You can put conditions in the for that will cause
some values to be skipped.
 for(n <- nums; if(n%2==0)) ...

Multiple Generators

 You can also put multiple generators in a for
loop.
 for(i <- 1 to 10; j <- i to 10) ...

 You can combine as many generators and
guards as you want. You can also declare
variables in the middle of the for.

 The thing you assign into is like a val so it can
be a “pattern”. We have only seen this with
tuples so far.

Multidimensional Arrays

 You can have collections of collections. A
common example would be something like
Array[Array[Double]] to represent a matrix.

 Both fill and tabulate can be used to make
these.
 val ident=Array.tabulate(3,3)((i,j) => if(i==j)

1.0 else 0.0)

Minute Essay

 Any questions?
 Midterm is on Monday. What times over the

weekend work well for you to have a review
session? I will also do a Google+ hangout
review session during the weekend.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

