

Loops and Reading from Files

3-5-2012

Opening Discussion

 Midterm answers.
 Minute essay comments

 Arrays if matrices.
 Using a HUD while driving.
 Advice on low cost gaming machine.
 How fast can I skate 20 laps and do I play roller

hockey?
 Consider watching instead of following.

while Loop

 Recursion is sufficient for making repetition, but
in imperative languages it isn't the normal
approach. Instead, people use loops.

 The simplest loop is the while loop.
 while(condition) statement

 The condition is evaluated first. If it is true the
statement (possibly a block) executes.

 This repeats until the condition is false.

do-while Loop

 The partner to the while loop is the do-while
loop.
 do {

 statement
 } while(condition)

 This loop is post-check instead of the pre-check
of the normal while loop.

 Always happens once.
 The while loop might never happen.

The for Loop

 The most commonly used loop in most
languages is the for loop. The Scala version is
a bit different from most.

 Often used for counting:
 for(i <- 1 to 10) { ... }

 In general it is a “for each” loop that goes
through a collection.
 for(e <- coll) { ... }

 Variable takes on value of each element in the
collection.

Range Type

 Range types provide an easy way to make
collections for counting.

 “to” and “until” operate on numeric types to
produce ranges.
 1 to 10
 0 until 10

 Use “by” to change the stepping in a range.
 1 to 100 by 2
 10 to 1 by -1
 'a' to 'z' by 3

yield

 The for loop can be used as an expression if
you put yield between the end of the for and the
expression after it.
 for(e <- coll) yield expr

 What you get back will be a collection that is
generally of the same type as what you iterated
over.

if Guards

 You can put conditions in the for that will cause
some values to be skipped.
 for(n <- nums; if n%2==0) ...

Multiple Generators

 You can also put multiple generators in a for
loop.
 for(i <- 1 to 10; j <- i to 10) ...

 You can combine as many generators and
guards as you want. You can also declare
variables in the middle of the for.

 The thing you assign into is like a val so it can
be a “pattern”. We have only seen this with
tuples so far.

Multidimensional Arrays

 You can have collections of collections. A
common example would be something like
Array[Array[Double]] to represent a matrix.

 Both fill and tabulate can be used to make
these.

 val ident=Array.tabulate(3,3)((i,j) => if(i==j) 1.0
else 0.0)

Motivation

 Programs are more useful when they can
interact with files.

 Everything that isn't in a file is lost when the
program stops running.

I/O Redirection

 Using I/O redirection gives you some very basic
ability to read from and write to files.

 It has big limitations though because there is
only one file each way.

 More over, that one file blocks the ability to use
either standard input or output.

Packages and Imports

 To read from a file we will be using the
scala.io.Source type. To understand what that
means, we need to talk about packages.

 Packages provide a way to organize code and
group things of like functionality.

 Import statements let you use things without
typing in their fully specified names.

The API

 To get a sense of the different package in
Scala, it is helpful to look at the API.

 There are still lots of things in the API you won't
fully understand. That isn't a problem as you
aren't expected to get too much from it right
now.

scala.io.Source

 Call Source.fromFile(fileName:String) to get a
Source object that reads from a file.

 There are other methods in the main Source
object that we will learn about later.

 The fromFile method technically gives you
BufferedSource. This is for efficiency.

Iterators

 Both Source and BufferedSource are of the
type Iterator[Char].

 An Iterator has most of the methods you are
used to from List and Array. However, you can
only go through it once.

 Fundamentally uses hasNext and next
methods.

getLines

 This will give you an Iterator[String] that will go
through the file one line at a time instead of a
character at a time.

 You will often find this more useful.

Minute Essay

 What questions do you have?
 IcP #5 on Friday (note this is moving back a

class).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

