

Loops and Reading from Files

3-5-2012

Opening Discussion

 Midterm answers.
 Minute essay comments

 Arrays if matrices.
 Using a HUD while driving.
 Advice on low cost gaming machine.
 How fast can I skate 20 laps and do I play roller

hockey?
 Consider watching instead of following.

while Loop

 Recursion is sufficient for making repetition, but
in imperative languages it isn't the normal
approach. Instead, people use loops.

 The simplest loop is the while loop.
 while(condition) statement

 The condition is evaluated first. If it is true the
statement (possibly a block) executes.

 This repeats until the condition is false.

do-while Loop

 The partner to the while loop is the do-while
loop.
 do {

 statement
 } while(condition)

 This loop is post-check instead of the pre-check
of the normal while loop.

 Always happens once.
 The while loop might never happen.

The for Loop

 The most commonly used loop in most
languages is the for loop. The Scala version is
a bit different from most.

 Often used for counting:
 for(i <- 1 to 10) { ... }

 In general it is a “for each” loop that goes
through a collection.
 for(e <- coll) { ... }

 Variable takes on value of each element in the
collection.

Range Type

 Range types provide an easy way to make
collections for counting.

 “to” and “until” operate on numeric types to
produce ranges.
 1 to 10
 0 until 10

 Use “by” to change the stepping in a range.
 1 to 100 by 2
 10 to 1 by -1
 'a' to 'z' by 3

yield

 The for loop can be used as an expression if
you put yield between the end of the for and the
expression after it.
 for(e <- coll) yield expr

 What you get back will be a collection that is
generally of the same type as what you iterated
over.

if Guards

 You can put conditions in the for that will cause
some values to be skipped.
 for(n <- nums; if n%2==0) ...

Multiple Generators

 You can also put multiple generators in a for
loop.
 for(i <- 1 to 10; j <- i to 10) ...

 You can combine as many generators and
guards as you want. You can also declare
variables in the middle of the for.

 The thing you assign into is like a val so it can
be a “pattern”. We have only seen this with
tuples so far.

Multidimensional Arrays

 You can have collections of collections. A
common example would be something like
Array[Array[Double]] to represent a matrix.

 Both fill and tabulate can be used to make
these.

 val ident=Array.tabulate(3,3)((i,j) => if(i==j) 1.0
else 0.0)

Motivation

 Programs are more useful when they can
interact with files.

 Everything that isn't in a file is lost when the
program stops running.

I/O Redirection

 Using I/O redirection gives you some very basic
ability to read from and write to files.

 It has big limitations though because there is
only one file each way.

 More over, that one file blocks the ability to use
either standard input or output.

Packages and Imports

 To read from a file we will be using the
scala.io.Source type. To understand what that
means, we need to talk about packages.

 Packages provide a way to organize code and
group things of like functionality.

 Import statements let you use things without
typing in their fully specified names.

The API

 To get a sense of the different package in
Scala, it is helpful to look at the API.

 There are still lots of things in the API you won't
fully understand. That isn't a problem as you
aren't expected to get too much from it right
now.

scala.io.Source

 Call Source.fromFile(fileName:String) to get a
Source object that reads from a file.

 There are other methods in the main Source
object that we will learn about later.

 The fromFile method technically gives you
BufferedSource. This is for efficiency.

Iterators

 Both Source and BufferedSource are of the
type Iterator[Char].

 An Iterator has most of the methods you are
used to from List and Array. However, you can
only go through it once.

 Fundamentally uses hasNext and next
methods.

getLines

 This will give you an Iterator[String] that will go
through the file one line at a time instead of a
character at a time.

 You will often find this more useful.

Minute Essay

 What questions do you have?
 IcP #5 on Friday (note this is moving back a

class).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

