

Grouping Data

3-19-2012

Opening Discussion

 Minute essay comments:
 Do I watch Battlestar Galactica?
 Recovering from midterms.
 Posting IcP solutions.
 Confusing wording in the book, my fault or editors?

 World of abundance, too many people not
doing anything.

 Possible format changes.

User Defined Types

 The general way we do this is to define our own
types.

 For now we will just use these types to collect
data together in a case class.

 This allows us to give meaning to the data with
meaningful names.
 case class TypeName(field1:Type1,field2:Type2,...)

 Example:
 case class NBAPlayer(name:String, team:String,

mins:List[Int], points:List[Int], rebounds:List[Int])

Instantiation

 Once we have defined a case class we can
make new objects of that type in one of two
ways.
 TypeName(expr1,expr2,...)
 Or
 new TypeName(expr1,expr2,...)

 Example:
 var td=NBAPlayer(“Tim Duncan”, ”Spurs”,

List(23,13), List(15,17), List(6,8))

Usage

 We can pull out values using dot notation and
the name of the field.

 Example:
 println(td.name+” averages

“+td.points.sum/td.points.length+” ppg”)

 The fields are vals so you can't change what
they reference. You can only change their
values if they are mutable.

Copy Method

 There is a copy method on case classes that
does what the name implies.

 It can take named arguments to change certain
fields in the copy.

 Example:
 td=td.copy(mins=17::td.mins, points=15::td.points,

rebounds=4::td.rebounds)

Putting it Together

 In the book I am building an example
application of a grade book. I'd like to do
something different in class so you see variety.

 Do you have any suggestions or do you want
me to come up with something? (CPI handling,
player stats, ...)

Motivation

 While text based programs still play a very big
role in computing, it is mostly behind the
scenes.

 You are far more used to working with
Graphical User Interfaces (GUIs).

 It is time that we learn how to write GUIs in
Scala.

Libraries

 There are three libraries that will wind up being
relevant to our discussion.
 java.awt – The Abstract Windowing Toolkit.

Original Java GUI library.
 javax.swing – Swing was built on top of AWT

to be more flexible.
 scala.swing – Scala code wrapped around

Java Swing to aid Scala GUI programming.

Making a Window

 In order to write a GUI we need to start by
popping up a window.

 For the main window of a GUI, we will make a
MainFrame. For other windows there are
Frame and Dialog types.

 We can set the title and size fields of the
MainFrame when we create it.

 Set visible to true to bring up the window.
 Oddly, we have to prevent the script from

stopping.

Active Components

 GUIs are made from components. Use
scala.swing package.
 Button(text:String)(action : => Unit).
 new CheckBox(label:String)

 selected:Boolean

 new ComboBox(items:Seq[A])
 selection.index to get the index of the current

selection
 new EditorPane(contentType:String,text:String)

More Components

 new FormattedTextField(format:String)
 text:String that will tell you the text

 new Label(text:String)
 new ListView(items:Seq[A])

 Use collection selection.indices to interact with
the index values that are selected.

 new PasswordField or new
PasswordField(text:String)

 text:String will tell you the text

More Components

 new ProgressBar
 min:Int, max:Int, and value:Int

 new RadioButton(text:String)
 selected:Boolean

 new ScrollBar
 minimum, maximum, and value are all Ints
 Generally use ScrollPane

 new Slider
 min, max, value
 orientation

Still More Components

 new Table(rowData: Array[Array[Any]],
columnNames: Seq[Any])

 new TextArea(text:String)
 text:String

 new TextField(text:String)
 text:String

Panes and Panels

 We build complex GUIs by nesting panels and
panes.
 BorderPanel

 Can hold up to five different components in the
north, south, east, west, and center positions.
Add to the layout as a tuple of (Component,
Position).

 BoxPanel
 Can hold a number of components either

vertically or horizontally, each takes the space it
needs. Use new BoxPanel(Orientation.Vertical).
Use contents+=Button(“text”)(action).

More Panels

 FlowPanel
 Components are laid out from left to right

wrapping like text in a word processor. You can
pass a variable length list of components as an
argument at construction or add the components
to contents.

 GridBagPanel
 This panel is more complex.

 GridPanel
 Holds a regular grid of components. You specify

how many rows and columns the grid has at
creation.

Panes

 ScrollPane
 Holds a single component passed in as an

argument at construction. Scroll bars automatic.

 SplitPane
 Two components separated by a moveable bar.
 new SplitPane(Orientation.Horizontal,

leftComp,rightComp)

 TabbedPane
 One component shown at a time. Tabs are

always shown. Add components by adding
Pages to the page object.

 pages += new Page(“A Tab”,tabComponent)

Menus

 Windows can set the MenuBar.
 Add Menu objects to the contents of the

MenuBar.
 Add MenuItems to the contents of the Menus.

 new MenuItem(Action(“Exit”){ exit(0) })

Example GUI

 Let's spend the rest of class laying out and
coding up a GUI for our data example.

Minute Essay

 Is there some type of GUI you would like to
have as IcP #6.

 Assignment #2 is due on Wednesday.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

