

Scala, Binary, Machine Arithmetic

1-23-2012

Opening Discussion

 CS majors e-mail list.
 Minute Essay comments

 Difference between vi and vim.
 Spaces change the value of a String.
 Duplicate IcPs will happen a fair bit.
 Quite Scala REPL with :q.
 2.5 is a Double.
 Apple isn't replacing professors … yet.
 Why are there so many programming languages?
 Booting Linux.

More

 Are lawyers going to become obsolete in the
coming decade?

 How do you master commands for this class?
 No hard copies for IcPs. They will be in a file.
 Pipes can be “stacked” as deep as you want.
 Quicker ways to search for specific ideas?
 Wildcards can be part of extensions.
 Do I see all service industry jobs being automated?
 Are creative jobs like painting and sculpting safe

from machines?

Key Terms

 Token – A set of characters that has meaning
to the language.

 Statement – A set of tokens that give a
complete instruction.

 Expression – Tokens put together that produce
a value.

 Type – All values have types. A type is a set of
values and the operations allowed on them.

 Literal – A token that represents a value.
 Numeric, String, Character, Boolean

Statements and Semicolon
Inference

 In Scala, as with most programming languages,
programs are made by putting together
statements.

 In Scala, any expression is a valid statement as
are a few other constructs.

 Statements end with semicolons, but they will
be inferred at the end of a line if they make
sense so you rarely type them.

Operators

 We can build longer expressions by putting
literals together with operators.

 Let's start off by playing with some of the
numeric operations you are probably familiar
with.
 +, -, *, /

 You can get the remainder after division with %.

Objects

 An object is defined to be information along
with the things you can do with that information.

 The information in an object is called the
properties/fields/members.

 The actions are called methods.
 In Scala, even things like Int are objects and

have methods on them.

Methods

 The normal way to call a method in Scala (and
most other object-oriented languages) is to put
a dot after the object and follow it with the
method name.

 The REPL will do tab completion and list
methods for you.

 Let's look at the methods on some basic types
and try calling them.

Arguments

 Some methods need additional information to
work.

 To give this to the method we pass in
arguments.

 Arguments are put in parentheses and
separated by commas if there is more than one.

 The parentheses are generally optional in Scala
if there is no argument.

Operator Syntax

 All the “operators” in Scala are really just
methods.

 Scala allows any method with zero or one
arguments to be called with an operator syntax.

 That means you leave off the dot and the
parentheses.

 If a method takes no arguments you can call it
without the dot.

Bases and Binary

 The decimal numbers we use are base 10.
Each digit to the left is a higher power of 10.

 There is nothing special with decimal (other
than perhaps we have 10 fingers). Other bases
are equally valid.

 Computers use binary numbers to store
everything.

 All digits are 0 or 1 and each position is a
higher power of 2.

 toBinaryString

Binary Addition

 Adding binary numbers is very easy. Just do
the long addition that you are used to.

 You will carry a lot more frequently because
anything above 1 causes a carry.

 Let's run through some examples.
 Consider implications of fixed precision.

Negative Numbers

 We don't have a – in the computer for negative
numbers. All we have are 1 and 0. So how do
we make negative numbers?

 Remember the definition of negative numbers
as additive inverse.
 a+(-a)=0

 We want to preserve this to keep addition
simple.

 This gives us 2s-compliment numbers.

Binary Multiplication

 Multiplying binary numbers works just like long
multiplication with decimals, but easier.

 My only recommendation is you only add two
numbers at a time and take it in steps.

Hexadecimal

 Binary is unwieldy for humans because of the
large number of digits.

 Hexadecimal (base 16) is commonly used
because it converts nicely to binary, but has
few digits.

 Four bits is a hex digit. Start at the right and
group bits by 4.

 Use letters A-F for numbers 10-15.
 Hex literals start with 0x
 toHexString

Octal

 Octal (base 8) is less common than hex, but not
uncommon.

 Group bits into groups of three.
 Octal literals and toOctalString().

The math Object

 For other math functions use methods on the
math object.

 For example, use math.sqrt() to take the square
root of a number.

Minute Essay

 Convert 276 to binary.
 We have our first quiz next class.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

