

Boolean Expressions and
Functions

2-1-2012

Opening Discussion

 Do you have any questions about the quiz?
 Minute essay comments

 Swing dancing on roller skates.
 Color and capitalization on “if”.
 Will people make machines to destroy the other

machines?
 How has programming changed recently and how

do I see it changing looking forward?
 Conditional execution with 3+ options?
 Password not string enough?

More

 Reading before or after class?
 Max on stacking if-else?
 How do you get Scala to repeat code without cut

and paste?

 Let's finish what we were doing last class.

Motivation

 I want to have a function that tells me if two
squares intersect.

 The function will be given the x and y location
of the center of each square as well as the
length of the side of each square.

 It should return a Boolean telling if they
intersect.

Conditional Logic

 We talked about comparisons of values in the
last class.

 We can also combine Boolean expressions
together using Boolean logic.

 There are four Boolean operators:
 && for and
 || for inclusive or
 ^ for exclusive or
 ! for not

Short Circuit Operators

 The && and || operators are short circuit
operators.

 This means that if the value is known after
evaluating the first operand, the second
operand won't be evaluated.

 This can prevent errors.
 Let's look at an example of this with division by

zero.

Nesting ifs

 What you put in an if can be any expression or
statement.

 As a result, you can put an if inside of another
if.

 As we will see, Scala doesn't care what you
nest inside of things. You write the logic that
makes sense to you and says what you want to
say.

Functions in Math

 Let's review the concept of functions from math.
 In algebra a function would take one or more

values and give you back a value. The values
were generally numbers.

 In higher level math this is generalized with
things like sets.

 In math functions the same input always leads
to the same result.

Functions in Programming

 The concept of a function is critically important
to programming.

 Functions can take one or more arguments and
give us back values. (Most languages allow
only one return value.)

 Let's think of some examples of functions that
we could write.

Functions in Scala

 We declare functions in Scala using def. Here
is the general form.
 def name(arg1:Type1, arg2:Type2, ...):Type =

expression

 The argument list can have zero or more
elements. If there are zero even the
parentheses can be left off.

 Function arguments must have types.
 The return type is optional, but it is

recommended.

Why Functions?

 Functions are used in programs for a number of
reasons.
 Reduce code duplication. You can call the same

function multiple times and only write it once.
 Improve readability and maintainability. Good

function names make it easier to read. Small
functions are easier to test and debug.

 Break problems down/problem decomposition.

Problem Decomposition

 Never solve a hard problem. If a problem is
hard, break it into smaller problems that are
easier. Repeat until you are only solving trivial
problems.

 Top-down
 This is the “normal” approach where you start with

the full problem and break it into pieces.

 Bottom-up
 Sometimes you realize that different trivial pieces

will be useful and build up from those.

Minute Essay

 What are your thoughts so far on the book?
Have you been reading? How much is it
helping?

 IcPs will be presented on Friday.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

