Stack, Queues, and Priority
Queues: Linked List Based

10-24-2002

Opening Discussion

What did we talk about last class?

Do you have any questions about the
assignment?

I'm going to be leaving campus right after
class to fly to the D.C. area and I won't
have e-mail access during the weekend so
asking questions now could be vital.

O(f(n)) Notation

When we say that an algorithm is of the
order of some function of n, what we are
saying is that the number of operations it
does grows with the input size in the
same way that function does.

It is called an asymptotic notation
because it is most accurate for large n
and we throw away all coefficients and
only keep the largest terms.




Stacks as Linked Lists

We have looked at how we can implement
the Stack interface with an array, but we
can also do it with a linked list.

For a linked list stack, we only need a
head pointer and all the pushes and pops
go on it or pull from it.

The main conceptual difference from an
array based stack is just which “end” we
are pushing to and popping from.

Queues as Linked Lists

Queues with arrays required a bit of extra
thinking to make them circular. They are
actually easier with a linked list.

We keep both a head and a tail. One is
the front and the other is the back of the
queue. To figure out which is which,
think about which one you can easily
remove from.

We make the choice because we want
O(1) operations.

The Priority Queue ADT

An ADT that is slightly more advanced
than the Stack or Queue is the Priority
Queue. This ADT acts like a queue, but
with the added complication that the
elements have a priority.

When elements are removed from it, it is
always the highest (or lowest) priority
element that is taken out next.

We want be be able to find that element
fast. Fast adds are nice too.




Sorted Linked Lists

We can easily make a linked list data
structure that is sorted by modifying the
insert method so that it inserts the new
node into the proper position in the list to
be sorted.

Building a sorted linked list is almost like
an insertion sort. The problem is that the
insert is a O(n) operation.

Using SLLs for Priority
Queues

If we build a sorted list based on priority,
then it automatically works as a priority
queue. Items are always removed from
the front of the list and inserted where
they belong in the list.

This gives fast, O(1), removes, but the
adding is O(n). We'll look at a faster
alternative later in the semester.

Code

Now we will look at code for some of
these things.




Minute Essay

How do you think the linked list based
queues and stacks compare to those we
looked at using arrays?

Remember that design #5 is due today.
Have a great fall break.




