Objects, Classes, and UML

9-3-2002

Opening Discussion

I hope everyone had a nice weekend.
What did we talk about last class?

Have you thought about possible project
ideas? Keep in mind that the design for
the assignment is due on Thursday.

Comments on last class:

The minute essays showed that everyone was
excited by the project and at least relatively
enthused about the class. Showing it in class
would help me gauge interest.

What is Object-
Orientation?

This is actually a very difficult question to
answer because it is hard to get people to
agree. The one term that almost
everyone will agree is part of object-
orientation is encapsulation.
Encapsulation is the binding together of
data and functionality into entities called
objects. This often also includes being
able to hide some data and functionality.

Objects

An object is basically a set of data
(attributes) that has certain functions
associated with it. The functions (called
methods, behaviors, or operations) can
act on the data for that object.

In many ways, an object in an object
oriented program is much like an object in
the real world. It has certain things that
it can do (methods) and data describing a
state.

Objects Continued

Keep in mind that an object represents a
single entity and gives the data for that
entity.

For example, computer is not an object.
Your computer is an object. Thisis a
significant distinction to make. The object
itself represents a single entity, not a
class of entities.

Calling a method of an object is often
referred to as sending it a message.

Classes

As the name implies, a class represents a
class of entities. In some ways, a class is
a blueprint for objects of a given type.
Just as a blueprint for a car is not a car, a
class is not an object.

What you will write in your code are
classes. (Note that not all object oriented
languages are class based.) You get to
specify in some general way what types of
object you have in your program.

Classes Continued

In Java objects are instances of a class.

When a method is called on an object it has
access to all the attributes of that object.

Java in not 100% object-oriented because it has
primitive types that aren’t objects and aren’t
instances of any class. This was done for
efficiency.

When talking about classes we often talk about
their interface or “public interface”. This is the
set of methods and attributes that are used by
other objects.

Inheritance: Short Version

Class based OOPLs typically also allow
classes to “inherit” from one another.

Inheritance implies two things. The name
comes from the fact that the inheriting
class (subclass) gets operations and
attributes from the inherited class
(superclass). It also implies a subtyping
relationship. Example: Honda inherits
from Car and Accord inherits from Honda.

Polymorphism: Short
Version

The term polymorphism technically means
“many shapes”. In programming, it
implies the something works with many
types. The subtyping aspect of
inheritance plays a role here.

A function that works on Cars should work
with any instance of any subtype of Car as
well. For example, you could give it my
instance of Accord and it should work.

Basics of Classes in Java

All functions in Java are methods of some
class. There are no stand alone functions.
Classes, attributes, and methods each
have a visibility attached to them.

public - can be used by anything

package private - can be seen by all classes
in this package

protected - can be used by subclasses

private - can be used only by methods of that
class

main in Java

Like C/C++, Java programs always begin
in a special method named main.
However, in Java main is a static method
of a class (remember there are no stand
alone functions). Every class can have its
own main which can be very helpful for
debugging.
The signature of main is

public static void main(String[] args) { }

UML Class Diagrams

UML stands for Unified Modeling
Language. Itis a formal graphic
representation of software analysis and
design. There are many types of UML
diagrams, but we will mainly be looking at
class diagrams.

In this diagram classes are represented by
boxes.

Java also has interfaces that we will look
at more a little later.

Inside a Class

The box for each class is divided into
three regions. The top one contains the
class name and possibly some modifiers.
The second region has attributes of the
class. Typically these are specified with a
visibility modifier followed by name:type.
The third region holds operations
(methods). They are displayed in a
similar format but arguments can follow
the name.

Modifier Symbols

Any of the attributes of operations can be
modified with a symbol showing visibility.

+ for public

for protected

- for private
Attributes can also be preceded by a '/’ in
some design tools to show that a given
attribute is read only. Note that attributes
aren't always member data.

Inheritance

The first relationship between classes is
an inheritance relationship.

In the diagram a subclass points to the
class that it inherits from. This might not
seem like the natural direction for the
arrow, but it was chosen because it is the
subclass that depends on the superclass.
Note that the superclass doesn’t “know” if
it has a subclass or what it might be.

Association

UML also gives us a way to denote when
two classes are associated with one
another is some way.

This is done with an association line.
Typically this implies that one class as
attributes whose type is the other class.
Associations can be labeled with a name
telling what type of association it is.

Example: Screen has grid of Blocks

Creating your First Project

First download the JAR file from the
course web site. Once you have Together
open you can select “New Project Expert”
from the file menu. Provide a name and
directory for the project. Make sure to
add that JAR file into the classpath before
hitting finish.

“"Draw” a new class and call it something
appropriate.

Design in Together

Together is nice because it ties together
the diagrams with the code and updates
things in both directions.

For your design work, you might try
closing the code window and doing
everything in the designer window and
the properties box. This will “stub out”
your code giving you method and
attribute declarations, but no code in the
methods.

Documentation Comments

If you don't work in the designer in Together,
you need to use documentation comments. Go
to the links page for a link to the description of
the flags used in Javadoc comments. You don't
need these for the first assignment really but
you will need one documentation comment
above your class.

Have Together generate documentation and put
it somewhere under the Local/HTML-Documents
in your directory on Sol.

Minute Essay

Do you have any questions about
assignment #1 at this point? Remember,
your design is due to me on Thursday.

Over the next 3 classes I will be running
through Java basics as well as more
details on inheritance and OOP. Were
there any aspects of today’s class that you
felt were unclear and would like to hear
again in more detail?

