Inheritance in Java

9-10-2002

Opening Discussion

What did we talk about last class?

How many of you have looked in the book
at the chapters I have asked you to read?
Did you have problems writing the code
for assignment #1? It isn't due until
midnight tonight and I would like you to
e-mail me your source code for this one.
I'm working on a different method of
submission but it isn't complete yet.

Immutability

From the minute essay answers last time
is seemed that about 50% of the class
had some problems with what
immutability means. An immutable class
is not a class that can't be changed, all
classes are like that in a Java execution, it
is a class where the objects of that type
can't be changed.

Good: prevents bugs

Bad: lots of allocations




Projects

Some of the project descriptions seemed
a little “bigger” than what you might want
to tackle. This doesn’t mean you can’t do
them. We can find ways around almost
any limitations you might find in the
framework, but it will require more work
on your part.

Having a “doable backup” is always
suggested especially if it is part of your
full design.

Inheritance

We have mentioned inheritance in each of
the last two classes.
As I said two classes ago, normal
inheritance plays two roles in
programming.

When class B inherits from class A, it “reuses”

all the non-private methods and members of
class A.

B also becomes a subtype of A.

Inheritance Hierarchies

The standard way of drawing out
inheritance is through a tree-like
hierarchy.

In UML the arrows point from the subclass
to the superclass. This is because the
superclass doesn’t generally know of all of
its subclasses but the subclasses know of
the superclass.




Inheritance for Code Reuse

The first side effect of inheritance is
gaining “copies of” non-private members.

This means that if A had a public method
foo() then B will also have a public
method foo().

In the assignment I mentioned that
MainFrame inherits from
javax.swing.Jframe and gets the show()
method from it.

Virtual Functions

One of the powers of Java is that you
don't always have to use the methods
defined by the superclass. You can
override them in the subclass.

Methods that can be overridden are called
virtual methods. By default all methods in
Java are virtual.

A method invokation uses the definition
“closest” to the actual class.

Final Keyword

If you have a method that you don't want
to ever be overridden, you can declare it
as final.

You can also declare an entire class to be
final in which case no subclasses can ever
be written to inherit from it.




Inheritance for Subtyping

Inheritance also provides subtyping. This
is in part because the subclass has all the
public methods and members of the
superclass.

Formally, when we say that B is a subtype
of A, what we are saying is that any place
in the code where an A is expected, a B
can be used, or a B can always take the
place of an A.

Inclusion Polymorphism

This ability to substitute subtypes in place
of supertypes is what leads to inclusion
polymorphism.

Inclusion polymorphism is a form of
“universal polymorphism” because there is
an infinite number of possible subclasses
for any given class (assuming it isn't
final).

Inclusion Polymorphism in
the Project

Inclusion polymorphism is what allows my
code to work with what you are going to
be writing.

You are going to create subtypes of the
types I have defined. My code works with
the supertypes and through inclusion
polymorphism it will work with your
subtypes as well.




Single Inheritance of
Classes

Java only allows single inheritance of
classes. That is to say that a class can
only inherit from one superclass.

This greatly simplifies code by reducing
ambiguity. C++ has multiple inheritance
which causes one to frequently need to
specify which superclass of a given class a
method should be called through.

Interfaces

Of course, C++ has multiple inheritance
for a reason, there are many times when
you want one type to be a subtype of
several supertypes.

To deal with this Java has interfaces. An
interface is much like a class, but contains
only method signatures. They have no
implementations and no member data.

Interfaces Continued

Java allows multiple inheritance from
interfaces because they can never create
ambiguity.

Implementing an interface only provides
subtyping, not code reuse.

Subtypes of interfaces need to implement
all of the methods of that interface or
they will be abstract.




Abstract Keyword

Just as methods and classes can be final,
they can also be abstract. In some ways
abstract is the opposite of final.

Final implies you can't override or inherit,
abstract implies that you must.

An abstract method of a class has no
implementation.

Any class that contains an unimplemented
method must be declared abstract.

Let’s Write Code

Now we will use the rest of the time to
write some code in Together that
demonstrates a bit more about Java and
inheritance as well as Together and what
you can do in it.

Minute Essay

Inheritance is a very powerful tool, but it
does have pitfalls. Can you think of what
some of the problems might be with using
inheritance? If not don't worry, they can
be subtle so then write any questions you
have about inheritance or how it is done
in Java.

Read the description of assignment #2
and think about it. The desing is due in
1.5 weeks.




