More Inheritance and More
Java Stuff

9-12-2002

Opening Discussion

What did we talk about last class?

Have you read the description of
assignment #2? Do you have any
questions about it?

Difficulties with
Inheritance

For the minute essay last time I asked
you about problems with inheritance.

One significant problem can be frailty.
You have to think about the public
interfaces of base classes very carefully
because when you have many subclasses
it is almost impossible to change them.
Also worry about public methods that call
other public methods.




Ref Types and Arg Passing

In C/C++ you had the choice of passing
by value or passing by reference. 1C,
passing by reference was done by passing
a pointer. In C++ you could pass a
pointer or a “reference”.

Java has only passing by value, but with
the condition that all object variables are
reference variables.

If you want to return two things you
return and object with them in it.

The super Keyword

Sometimes you want to be able to access
methods or constructors from the
superclass of a given class. In Java this is
done with the super keyword.
For constructors the first line of a constructor
can be super(argl,argz,...); to call the
constructor of the superclass that takes the
given argument list.

For other methods, using super.method(...)
will call that method of the superclass.

Inner Classes

Starting with version 1.1, Java introduced
inner classes. The simplistic view of inner
classes is that they are classes inside of
other classes. You can do this in C++.

The full reality is that inner classes in Java
have more complexity than an embedded
class in C++. For one thing, unless you
state otherwise, inner classes keep track
of the instance of the “outer class” that
creates them.




Static Inner Classes

The construct in Java that is most like an
embedded class in C++ is a static inner
class.

The instances of this inner class are
associated with the class as a whole.

Unlike in C++, they have access to all static
methods and members of the outer class.

Make inner classes static unless they need
to be otherwise.

Non-static Inner Classes

If an inner class is not declared static, it
will get a reference to the instance of the
outer class in which it is created.

This gives it access to all methods and
members of that instance. The methods
of the inner class can access the private
data of the outer class.

This adds some overhead, but can be very
handy at times.

Anonymous Inner Classes

Java has another construct that has no
parallel in C++, the anonymous inner
class.

As the name implies, these classes have
no names. Instead, they have to be a
subtype of some class or interface. They
can then be used as an instance of the
supertype.

They allow you to create a class “inline”,

in tha codo far 2 mathad




More on Anonymous ICs

They are static or not depending on the
type of method they are created in.
They have access to all the things the
named inner classes of their type would
have, plus the final variables in the
method in which they are declared.
These are used extensively for event
handling in Java GUIs.

Let’s write some code

Now let's write some code that
demonstrates all the majors syntactic
points of Java that we have talked about
and displays inheritance.

Minute Essay

Next class is on string processing. This
means that we are going to move away
from talking about the nature of the
language itself. What questions do you
still have about the Java language? Do
you feel comfortable trying to code
assignment #2 and if not what would
help?

Quiz #1 is on Tuesday.




