
Stack, Queues, and Priority
Queues: Linked List Based

10-26-2004

Opening Discussion

 What did we talk about last class? Does
anyone have any code to show?

 Do you have any questions about the
assignment? Remember that assignment
#4 is due today and assignment #5 is
due a week from today.

 Let's look at some code related to stuff
from last class real quick.

Stacks as Linked Lists

 We have looked at how we can
implement the Stack interface with an
array, but we can also do it with a linked
list.

 For a linked list stack, we only need a
head pointer and all the pushes and pops
go on it or pull from it.

 The main conceptual difference from an
array based stack is just which “end” we
are pushing to and popping from.

Queues as Linked Lists
 Queues with arrays required a bit of extra

thinking to make them circular. They are
actually easier with a linked list.

 We keep both a head and a tail. One is
the front and the other is the back of the
queue. To figure out which is which,
think about which one you can easily
remove from.

 We make the choice because we want O
(1) operations.

The Priority Queue ADT
 An ADT that is slightly more advanced

than the Stack or Queue is the Priority
Queue. This ADT acts like a queue, but
with the added complication that the
elements have a priority.

 When elements are removed from it, it is
always the highest (or lowest) priority
element that is taken out next.

 We want be be able to find that element
fast. Fast adds are nice too.

Sorted Linked Lists

 We can easily make a linked list data
structure that is sorted by modifying the
insert method so that it inserts the new
node into the proper position in the list to
be sorted.

 Building a sorted linked list is almost like
an insertion sort. The problem is that the
insert is a O(n) operation.

Using SLLs for Priority
Queues

 If we build a sorted list based on priority,
then it automatically works as a priority
queue. Items are always removed from
the front of the list and inserted where
they belong in the list.

 This gives fast, O(1), removes, but the
adding is O(n). We’ll look at a faster
alternative later in the semester.

Code

 Now we will look at code for some of
these things.

Testing Code

 Testing of code is a very important topic
and something that you should be doing.
In some cases, just running the game
does a fairly good test, but it isn’t always
the easiest one to debug.

 Remember that in Java you can put a
main in any class. You should put a main
in things like your linked list class where
all you do is test and print out stuff.

Error Handling

 In the code that you are probably used to,
there are two ways that a function can tell
you if an error occurred.
 Return an error code.
 Set a flag that should be checked.

 Both of these are very easy to ignore
which can lets the errors “propagate” and
makes debugging much more difficult.

Enter Exceptions

 An alternate approach to error handling is
the use of exceptions. As their name
implies, exceptions are things used for
exceptional events.

 When an error occurs, the code will
“throw” an exception. When an exception
is thrown control pops up the stack until
code is found to handle it. If no handler is
found that thread exits completely.

try, catch, and finally
Blocks

 There are 4 syntactic components of dealing with
exceptions. The ones you will write most are try
and catch blocks.

 When you have a section of code that can have
an exception thrown in it that you want to handle,
you put it in a try block.

 After the try block you can have one or more
catch blocks. Each one specifies a type and
catches anything of that type (including
subtypes).

 A finally block is like a default. In addition, it
ALWAYS happens.

throws and throw

 Sometimes a method can have an
exception occur in it, but it doesn’t know
how to handle it. In this situation, the
exception should be added to the throws
clause of the method declaration.

 If you want to throw your own exceptions
you use the throw statement. It is
followed by an object that is the exception
to be thrown.

Checked vs. Unchecked
Exceptions

 There are two broad categories of
exceptions.
 Checked exceptions must either be caught, or

they must appear in the throws clause of the
method.

 Unchecked exceptions don’t have to do this and
often shouldn’t be handled. If an unchecked
exception arises it typically signifies a major
problem and the code should crash.

 Subtypes of RuntimeException are
unchecked.

Benefits of Exceptions

 Exceptions are nice because they can’t be
ignored. They tell you there is a problem
immediately instead of letting the code run
on until it has a serious problem or just
leaving logic errors.

 The Exception class also has handy
methods like printStackTrace() that can be
used to help with the debugging process
as well.

Code

 Let’s go look in the javadocs at some of
the function calls that can throw
exceptions then write some code of our
own to throw them and use that code.

Minute Essay

 How do you think the linked list based
queues and stacks compare to those we
looked at using arrays?

 Remember that assignment #4 is due
today, design #5 and quiz #4 are on
Thursday.

