

Parallel Collections and Actor
Threads

9-19-2011

Opening Discussion

 Minute essay comments
 Using threads in projects.

 AI
 Needs significant workload.
 Splitting up drawing.
 Threading input.

Parallel Data Structures

 BlockingQueue
 ConcurrentMap
 CountDownLatch
 CyclicBarrier
 Exchanger
 PriorityBlockingQueue
 Semaphore
 Scala provides some support for basic

collections.

Locks

 More flexible than synchronized.
 Provides extra power when needed. Particularly

for locking across method calls.

Atomics

 Data values with atomic access.
 Faster and easier than doing your own

synchronization.

Parallel Collections

 Scala 2.9 introduced scala.collection.parallel.
 The methods of these collections do their work

in parallel.
 Covert from regular collections to parallel ones

by calling the “par” method.
 Convert back with “seq”.
 Not all collections convert efficiently.

Actor Threads and Futures

 The scala.actors library provides an alternative
threading model we will explore in depth later
on.

 For now there are two methods that simplify
launching threads.
 Actor.actor(body: => Unit):Actor
 Futures.future[T](body: => T):Future[T]

 Use the first to launch code in a thread. Use the
second if you want a return value.

Code

 Let's write some.

Minute Essay

 Questions about parallel before we move on to
streams?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

