9-26-2011



Opening Discussion

What did we talk about last class?

IcP solutions



These days, a computer loses a lot of its value
if it isn't networked.

We need to learn how to allow our programs to
talk to other computers.

This can happen in a lot of different ways from
just reading information off the machine to
having a “dialog” to exchange information.

Most things we want are in the java.net
package.



Computers communicate over sockets. They
come in two main flavors.

TCP — This is the default. Does handshaking to
determine if messages get through. Reliable, but
slower.

UDP — Throw packets out and hope the other side
gets them. Fast, but code has to deal with possible
dropped packets.

One machine acts as a server and waits on a
port. Other machines, clients, can connect to
that port.



Sockets and Streams

Sockets in Java communicate through streams.
So any code you wrote for file streams can be
converted to networking with little to no effort.

Let's write a simple telnet based chat room first.

After that we can add either chat or sending
drawings to our main program.



Remote Method Invocation (RMI)

Standard socketing approach gets challenging
when there are a lot of different method types.
Java has RMI to help deal with this.

Steps in RMI (for Scala)

Make a completely abstract trait that implements
java.rmi.Remote with the methods you want to call
remotely. @throws(classOf[RemoteException])

Implement in class that extends
java.rmi.server.UnicastRemoteObject.

Naming.bind/rebind and Naming.lookup
rmiregistry



Minute Essay

What questions do you have about networking?



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

