

Networking

9-26-2011

Opening Discussion

 What did we talk about last class?
 IcP solutions

Networking

 These days, a computer loses a lot of its value
if it isn't networked.

 We need to learn how to allow our programs to
talk to other computers.

 This can happen in a lot of different ways from
just reading information off the machine to
having a “dialog” to exchange information.

 Most things we want are in the java.net
package.

Sockets

 Computers communicate over sockets. They
come in two main flavors.
 TCP – This is the default. Does handshaking to

determine if messages get through. Reliable, but
slower.

 UDP – Throw packets out and hope the other side
gets them. Fast, but code has to deal with possible
dropped packets.

 One machine acts as a server and waits on a
port. Other machines, clients, can connect to
that port.

Sockets and Streams

 Sockets in Java communicate through streams.
So any code you wrote for file streams can be
converted to networking with little to no effort.

 Let's write a simple telnet based chat room first.
 After that we can add either chat or sending

drawings to our main program.

Remote Method Invocation (RMI)

 Standard socketing approach gets challenging
when there are a lot of different method types.
Java has RMI to help deal with this.

 Steps in RMI (for Scala)
 Make a completely abstract trait that implements

java.rmi.Remote with the methods you want to call
remotely. @throws(classOf[RemoteException])

 Implement in class that extends
java.rmi.server.UnicastRemoteObject.

 Naming.bind/rebind and Naming.lookup
 rmiregistry

Minute Essay

 What questions do you have about networking?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

